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SUMMARY

Although we often encounter circumstances with
which we have no prior experience, we rapidly learn
how to behave in these novel situations. Such adap-
tive behavior relies on abstract behavioral rules that
are generalizable, rather than concrete rules map-
ping specific cues to specific responses. Although
the frontal cortex is known to support concrete rule
learning, less well understood are the neural mecha-
nisms supporting the acquisition of abstract rules.
Here, we use a reinforcement learning paradigm to
demonstrate that more anterior regions along the
rostro-caudal axis of frontal cortex support rule
learning at higher levels of abstraction. Moreover,
these results indicate that when humans confront
new rule learning problems, this rostro-caudal divi-
sion of labor supports the search for relationships
between context and action at multiple levels of
abstraction simultaneously.

INTRODUCTION

Rapid adaptation to novel circumstances is a hallmark of intelli-

gent behavior. This ability partially requires the representation of

rules that can associate a context with a specific behavioral

response. However, adaptive behavior further requires the ability

to generalize rules to novel circumstances. For example, we can

rapidly work out an unusual mechanism by which a door is

opened, such as pulling a cord rather than turning a knob,

even if we have no prior experience using that mechanism to

open a door. Such rule generalization depends on the discovery

of abstract relationships between context and classes of action

that are not dependent on a one-to-one mapping between

a stimulus and a particular motor response.

Lateral frontal cortex, and the prefrontal cortex (PFC) in partic-

ular, has an established role in representing rules for action and

supporting adaptive behavior (Badre and Wagner, 2004; Bunge,

2004; D’Esposito et al., 1995; Duncan, 2001; Miller and Cohen,

2001; Passingham, 1993; Petrides, 2005; Stuss and Benson,

1987; Wallis et al., 2001). Current models of PFC conceptualize

this function in terms of cognitive control, defined as the ability
of frontal neurons to represent contextual information in order

to bias selection of appropriate action pathways over competi-

tors (Badre and Wagner, 2006; Botvinick et al., 2004; Braver

et al., 2003; Cohen et al., 1990; Miller and Cohen, 2001; O’Reilly

and Frank, 2006). Moreover, frontal cortex, in concert with

striatum, is critical for the acquisition of behavioral rules (Asaad

et al., 1998; Passingham, 1989; Petrides, 1987; White and

Wise, 1999). However, previous studies of learning have

primarily focused on the formation of concrete conditional asso-

ciations between specific stimuli and responses, rather than on

the learning of abstract rules.

The functional organization of frontal cortex may provide clues

as to the mechanisms by which abstract rules are acquired.

Growing evidence indicates that the rostro-caudal axis of frontal

cortex may be organized hierarchically such that neurons in

more anterior regions of frontal cortex process progressively

more abstract representations in the service of cognitive control

(Badre, 2008; Badre and D’Esposito, 2007; Badre et al., 2009;

Botvinick, 2007, 2008; Buckner, 2003; Bunge and Zelazo,

2006; Christoff and Keramatian, 2007; Koechlin and Jubault,

2006; Koechlin et al., 2003; Koechlin and Summerfield, 2007;

Petrides, 2006; Race et al., 2008). In general, hierarchies facili-

tate learning and adapting to novel circumstances because

they have the ability to represent information at multiple, increas-

ingly abstract levels (Chase and Simon, 1973; Estes, 1972; Gick

and Holyoak, 1983; Greeno and Simon, 1974; Lashley, 1951;

Miller et al., 1960; Newell, 1990; Paine and Tani, 2005). Such

abstracted representations are more easily analogized to novel

circumstances, thereby facilitating transfer of knowledge gained

in one context to a new one. Hence, it is reasonable to hypothe-

size that the capacity for rule abstraction afforded by a putative

frontal lobe hierarchy might support rapid adaptive behavior.

However, previous demonstrations of hierarchically arrayed

processors in the PFC have only tested the execution of well-

learned rules, acquired through explicit instruction, and so these

studies have not been designed to address how this functional

organization might be leveraged to facilitate rule discovery.

The current study seeks to fill this gap by investigating reinforce-

ment learning of abstract versus concrete behavioral rules.

A rule can be defined as abstract to the extent that it deter-

mines a set of simpler rules based on contextual information.

This type of abstraction is termed policy abstraction (Badre

et al., 2009; Botvinick, 2008). For example, consider two simple

rules: a circle cues a left-hand response and a triangle cues
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Figure 1. Schematic Depiction of Trial

Events, Example Stimulus-to-Response

Mappings, and Policy for Hierarchical and

Flat Rule Sets

(A) Trials began with presentation of a stimulus fol-

lowed by a green fixation cross. Participants could

respond with a button press at any time while the

stimulus or green fixation cross was present. After

a variable delay after the response, participants

received auditory feedback indicating whether

the response they had chosen was correct given

the presented stimulus. Trials were separated by

a variable null interval.

(B) Example stimulus-to-response mappings for

the Flat set. The arrangement of mappings for

the Flat set was such that no higher-order relation-

ship was present; thus, each rule had to be learned

individually.

(C) This set of many first-order rules can be repre-

sented as a large, Flat policy structure with only

one level and eighteen alternatives.

(D) Example stimulus-to-response mappings for

the Hierarchical set. Response mappings are

grouped such that in the presence of a red square,

only shape determines the response, whereas in

the presence of a blue square, only orientation

determines the response.

(E) The Hierarchical set can be represented as a

two-level policy structure with a second-order

rule selecting between the shape or orientation

mapping sets, and a set of first-order rules then

relating specific shapes or orientations to

responses.
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a right-hand response. This first-order policy specifies a one-to-

one relationship between a specific stimulus (i.e., a shape) and

a response. However, consider an independent set of first-order

policy, based on size, in which a large stimulus cues a left-hand

response and a small stimulus cues a right-hand response.

Because the shape and size rule sets are independent, both

cannot simultaneously govern responding. For instance, if the

relevant set of first-order policy is unknown, a stimulus that is

both circular and small cues opposing responses. Conse-

quently, a more abstract rule (second-order policy) is required

in order to specify which set of first-order rules (shape or size)

should govern responding in the current context. For example,

framing the stimulus with a red border might indicate that shape

is the appropriate first-order policy, whereas green might

indicate size. Because this second-order policy based on color

specifies a class of simpler rule sets (shape or size) rather than

a specific response, it is more abstract.

Using the above definition of abstraction, we designed a rein-

forcement learning task that provides participants an opportu-

nity to acquire an abstract rule (second-order policy). During

fMRI scanning, participants were required to learn two sets

of rules, in separate epochs, that linked each of 18 different

stimuli uniquely and deterministically to one of three button-

press responses (Figure 1). For each rule set, an individual

stimulus consisted of one of three shapes, at one of three

orientations, inside a box that was one of two colors for a total

of 18 unique stimuli (3 shapes 3 3 orientations 3 2 colors;

Figure 1). Participants were instructed to learn the correct
316 Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc.
response for each stimulus on the basis of auditory feedback

(Figure 1A).

For one of the two rule sets, termed the ‘‘Flat’’ set, each of the

18 rules had to be learned individually as one-to-one mappings

(first-order policy) between a conjunction of color, shape, and

orientation and a response (Figures 1B and 1C). In the other

set, termed the ‘‘Hierarchical’’ set, stimulus display parameters

and instructions were identical to the Flat set. And, indeed, the

Hierarchical set could also be learned as 18 individual first-order

rules. However, the arrangement of response mappings was

such that a second-order relationship could be learned instead,

thereby reducing the number of first-order rules to be learned

(Figures 1D and 1E). Specifically, in the context of one colored

box, only the shape dimension was relevant to the response,

with each of the three unique shapes mapping to one of the three

button responses regardless of orientation. Conversely, in the

context of the other colored box, only the orientation dimension

was relevant to the response. Thus, the Hierarchical rule set

permitted learning of abstract, second-order rules mapping

color-to-dimension along with two sets of first-order rules

(i.e., specific shape-to-response and orientation-to-response

mappings; Figure 1E).

Critically, all instructions, stimulus presentation parameters,

and between-subject stimulus orderings were identical between

the two rule sets. The Flat and Hierarchical rule sets only differed

in that the organization of mappings in the Hierarchical set

permitted learning of a second-order rule. Hence, these two

sets contrast a learning context in which abstract rules can be
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Figure 2. Behavioral Data

(A) Shown are the learning curve estimates, bounded by a 90% confidence

interval, for the single subject whose learning trials for the Hierarchical and

Flat sets were closest to the group means for each condition (Hierarchical =

64; Flat = 91). Black arrows illustrate the learning trial, at which the lower confi-

dence bound rose above chance performance (33%). Gray arrows highlight

the terminal accuracy.

(B) Subsequent panels depict the correlates of learning ± SEM across the

20 subjects for the Hierarchical and Flat sets: the terminal accuracy; the

maximal first derivative of the learning curve, representing the speed of

learning; the maximal second derivative of the learning curve, representing

the rate of change in the speed of learning; and the learning trial (i.e., the value

depicted by the black arrows in A). For three subjects, learning for the Flat set

never rose above chance; these subjects were excluded from the calculation

for the mean Flat learning trial (n = 17). (See also Figure S1 for further behavioral

data.)
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discovered with an analogous context in which no such rules can

be learned. Thus, this design provides a means of studying the

neural mechanisms of abstract rule learning.
RESULTS

Behavioral Results
Learning curves were generated based on the estimated proba-

bility of a correct response on each trial along with a 90% confi-

dence interval (see Experimental Procedures and Figure 2A).

Differences in these estimates between the Hierarchical and

Flat rule sets were consistent with the acquisition of generaliz-

able, second-order rules for the Hierarchical set.

First, generalization should make the learning task easier, in

that more of the specific mappings between stimuli and re-

sponses should be acquired. Terminal accuracy was signifi-

cantly higher for the Hierarchical (84%) than the Flat (58%)

rule set [F(1,19) = 26.3, p < .0001; Figure 2B, leftmost panel].

Moreover, a significantly higher proportion of individual rules

were learned in the Hierarchical (72%) than Flat (43%) set

[F(1,19) = 14.6, p < .005]. It should be noted that neither these

effects, nor any others reported here, changed as a function of

which rule set was learned first.
Second, generalization should make learning more efficient,

in that once an abstract rule is acquired for one stimulus, it is

applicable to all others like it. Indeed, learning trial estimates—

defined as the number of presentations of a specific stimulus

before the response associated with that stimulus is known—

came earlier for individual rules in the Hierarchical versus Flat

set [t(19) = 2.1, p = .05; Figure 2B, rightmost panel].

Crucially, the facilitation of learning associated with general-

ization should be specific to the first-order rules entailed by a

learned second-order rule. To test this prediction, we identified

all first-order rules for each subject that were learned above

chance, termed learned first-order rules. We then assumed

that a subject knew a second-order rule associating a color

with either shape or orientation if, in the Hierarchical case, all

nine rules sharing that color were learned first-order rules. We

defined such sets as ‘‘known second-order sets.’’ We note there

was never a case in which all nine rules associated with a given

color were known by the end of learning for the Flat rule set. The

average learning trial for learned first-order rules that were

members of ‘‘known second-order sets’’ in the Hierarchical

condition was reliably earlier in learning than the average learning

trial for learned first-order rules in the Flat condition [t(19) = 3.8,

p < .005]. Importantly, this effect was not driven by the fact

that Hierarchical rules were learned more quickly, on average,

than were Flat rules. Within the Hierarchical condition itself, the

average learning trial for first-order rules that were members of

‘‘known second-order sets’’ was also reliably earlier than the

learning trial for learned first-order rules that were not members

of a known second-order set [t(19) = 2.5, p < .05]. Moreover,

there was no reliable difference in the learning trial for learned

first-order rules in the Flat set and learned first-order rules in

the Hierarchical set that were not members of a known

second-order set [t(19) = 1.5, p = 0.2]. Thus, consistent with

generalization, the faster learning rate for the Hierarchical set

was specific to those learned first-order rules in the Hierarchical

set for which the second-order rule had been acquired.

Third, once acquired, the generalization of a second-order rule

to unknown first-order rules should be reflected in an abrupt gain

in accuracy. Across subjects, Hierarchical curves consistently

showed step-wise increases, presumably reflecting acquisition

and generalization of a second-order rule (e.g., Figure 2A; see

also Figure S1A available online). By contrast, a gradual increase

was evident for the Flat curves. This qualitative difference in the

shape of the learning curves was reflected in a greater maximum

first derivative (maximum learning rate) and second derivative

(maximum rate of change in the learning rate) for the Hierarchical

than Flat rule sets [Fs > 9.0, ps < .01; Figure 2B].

We further tested the tendency for the Hierarchical learning

curves to be step-wise relative to the Flat learning curves by

explicitly fitting a sigmoid function to each participant’s learning

curves. The sigmoid is defined by two parameters, a and b, that

represent the slope and offset of the sigmoid, respectively.

A larger value of a indicates a steeper step, and a smaller value

of b indicates that the step occurred earlier in learning. Critically,

a was significantly larger (Wilcoxon’s rank sum test: Z = 2.5,

p < 0.05) and b was significantly smaller (Z = �2.9, p < 0.005)

for the Hierarchical than Flat curves. Goodness of fit did not differ

(Z = �0.75, p = .46). To ensure that these differences were not
Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc. 317
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Figure 3. Basic Imaging Results

(A) Inflated representation of the left hemisphere

showing areas that demonstrated a positive main

effect of task (T-values indicated by the color

bar), thresholded by a false discovery rate <

0.05. The locations of regions of interest (ROIs)

determined independently from a previous data

set (Badre and D’Esposito, 2007) are overlaid

(from posterior to anterior, 1 = dorsal premotor

cortex [PMd], 2 = pre-premotor cortex [prePMd],

3 = mid dorsolateral prefrontal cortex [mid-

DLPFC], and 4 = rostro-polar cortex [RPC]).

(B) For prePMd but not for PMd, total activity as

measured by the integrated percent signal

changes (iPSCs) for correct trials only differed

across learning for the Hierarchical and Flat sets

(*p < 0.05).

(C) Dividing the learning curve into three temporal

epochs of 120 trials each (Begin, Middle, and End)

reveals that these differences in PMd emerged

after the initial phase of learning for the Hierar-

chical set (*p < 0.05; �p < 0.10).

(D) Dividing the learning curve by estimated

performance (see text) confirms the temporal

differences seen in prePMd. (See also Figure S2.)

All error bars indicate the standard error of the

mean.
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driven by model assumptions that produced the parametric

learning curve estimates, we also fit sigmoid functions, via

Bernoulli assumptions, directly to each subject’s responses.

Consistent with the above analysis, a was again significantly

larger (Z = 2.7, p < .01) and b was significantly smaller (Z =

�2.7, p < .01) for the Hierarchical than Flat curves.

FMRI Activation during the Learning Task
A whole-brain, voxel-wise contrast of all conditions versus base-

line identified regions that were reliably activated relative to

baseline during the learning task (Figure 3A). This contrast

yielded a characteristic frontoparietal and subcortical network

consistent with both prior studies of rule learning and studies

of hierarchical cognitive control. Bilateral bands of activation
318 Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc.
extended rostral to caudal in frontal

cortex, including dorsal premotor cortex

(PMd; �42 �4 60; 34 �2 56; �BA 6),

dorsal anterior premotor cortex (prePMd;

�46 4 32; 54 14 30; �BA 6/44), mid-

dorsolateral prefrontal cortex (mid-

DLPFC; �50 28 36; 48 34 40; �BA 9/

46), and frontal polar cortex (FPC; �34

56 10; 40 60 14; �BA 10/46). These ros-

tro-caudal frontal activations corre-

sponded closely to regions previously

associated with progressively abstract

levels of policy selection (Badre and

D’Esposito, 2007). Additional frontal acti-

vations were observed in the supplemen-

tary motor area (SMA; �6 26 42; 2 24 48)

and anterior insula (�32 26�2; 28 28�2).
Beyond frontal cortex, task-related activation was evident in

bilateral superior (�27 �52 57; 24 �56 55) and inferior parietal

lobules (IPL;�46�40 56; 46�36 50). Subcortically, task-related

activation was observed in bilateral striatum, including the

body of the caudate (�18�6 21; 19�6 22) and anterior putamen

(�25 2 �4; 22 12 2).

To test our predictions regarding learning at different levels of

abstractionand their relationship to the rostro-caudal axisof frontal

cortex, we defined regions of interest (ROI) in PMd (�30 �10 68),

prePMd (�38 10 34), mid-DLPFC (�50 26 24), and FPC (�36 50 6)

by using coordinates that were previously in associated with para-

metric increases in first through fourth order control, respectively

(Badre and D’Esposito, 2007). Analysis of the effects of learning

manipulations focused initially on these ROIs.
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Hierarchical versus Flat Rule Sets in the Frontal Cortex
We assessed differences in frontal cortex due to the rule set, re-

stricting this and all subsequent analyses to stimulus-related

activity (i.e., prior to feedback) for correct trials only. Both the

Flat and Hierarchical rule sets involve the learning and execution

of simple stimulus-response mappings (first-order policy). How-

ever, only the Hierarchical rule set includes rules at a second

order of policy abstraction. In prior work (Badre and D’Esposito,

2007), we demonstrated that tasks requiring only first-order

policy activated PMd, whereas second-order policy additionally

engaged the more rostral prePMd. Consistent with this previous

study, differences between Flat and Hierarchical rule sets were

evident in prePMd [F(1,19) = 5.0, p < 0.05], but not in the more

caudal PMd region (F = 0.4; Figure 3B). Even more rostral mid-

DLPFC and FPC, at the highest levels of abstraction, did not

show a reliable difference between the Hierarchical and Flat

sets (Fs < 0.9). Hence, despite the fact that subjects engaged

in a task in which no explicit instructions were provided about

a second-order rule, prePMd was the only region to reliably

distinguish between Hierarchical and Flat rule sets.

Time-Dependent Analysis of Learning
in the Frontal Cortex
The overall difference in prePMd activation between Hierarchical

versus Flat conditions is consistent with previous work demon-

strating a hierarchical organization along the rostro-caudal axis

of the frontal cortex (Koechlin et al., 2003; Badre and D’Esposito,

2007), although here the higher-order rules were acquired

through reinforcement rather than explicit instruction. However,

because the present study is primarily concerned with under-

standing the mechanisms of abstract rule learning, determining

at what point in time and in what way this difference in prePMd

emerges during learning is of central importance. In particular,

if the discovery and execution of second-order rules only occurs

after first-order rules are successfully learned, one might predict

that activation in prePMd would remain at baseline until late in

learning and increase only in the Hierarchical condition after

sufficient numbers of first-order rules have been acquired. Alter-

natively, if the search for higher-order rules occurs in parallel with

the search for first-order rules, one would anticipate that activa-

tion in prePMd would be above baseline for both the Hierarchical

and Flat sets from the outset of learning, remaining at that level

throughout the block in the Hierarchical condition but declining

to baseline by the end of learning in the Flat condition.

In order to test these predictions, we divided learning sets

into three phases: ‘‘Begin,’’ ‘‘Middle,’’ and ‘‘End.’’ The crossing

of learning set (Hierachical/Flat) with learning phase (Begin/

Middle/End) was assessed in the PMd and prePMd. During the

Begin phase of learning, both regions were reliably active relative

to baseline [t(19) > 3.9, ps < .001], and no difference was evident

between the learning sets in either region (Fs < 1.9; Figure 3C).

However, by the Middle phase of learning, a reliable difference

emerged between the Flat and Hierarchical sets in prePMd

[F(1,19) = 4.2, p < 0.05] but not in PMd (F = 0.5). The End phase

again showed a reliable difference between Flat and Hierarchical

in prePMd [F(1,19) = 6.4, p < 0.05]. This difference between Flat

and Hierarchical in prePMd was due to a reliable decline in acti-

vation for the Flat [F(1,19) = 4.3, p < 0.05] rule set at the Middle
and End phases of learning, whereas no such decline was

evident for the Hierarchical learning set (F = 0.05). During the

End phase, PMd also revealed a trend difference between

Hierarchical and Flat rule sets [F(1,18) = 3.8, p = .06]. However,

this difference was due to a reliable increase in activation for

the Hierarchical [F(1,18) = 4.9, p < .05] but not Flat (F = .8)

learning set. In summation: (1) At the beginning of learning,

prePMd and PMd were active above baseline for both the

Hierarchical and Flat sets. (2) By the Middle phase of learning,

activation had declined reliably for the Flat but not the Hierar-

chical set in prePMd. (3) At the end of learning, there was a

reliable increase in activity for the Hierarchical but not Flat set

in PMd.

These results are initially consistent with the hypothesis that

the search for rules occurs at multiple levels of abstraction

from the outset of learning. However, although the region by

phase interaction was reliable [F(2,36) = 3.4, p < .05), individual

differences in the learning curves (see Figure S1A) could intro-

duce variability and so reduce our sensitivity to regional differ-

ences. Additionally, due to superior accuracy in the Hierarchical

set, processes related to improved performance, but unrelated

to policy abstraction, could diminish the interpretability of our

effects. For addressing these issues, learning analysis was per-

formed on performance-aligned curves.

Performance-Equated Changes in Learning
in the Frontal Cortex
To evaluate differences in performance between subjects, we

divided the learning curves into performance epochs based on

accuracy, rather than temporal epochs, using three anchor

points: (1) the division between the lowest level of accuracy

(PE-1) and the next highest (PE-2) was defined by the median

across-subject accuracy (0.42) at the learning trial; (2) the divi-

sion between the highest level of accuracy (PE-4) and the next

lowest (PE-3) was defined by the median terminal accuracy

(0.70); and (3) the division between performance levels two and

three (PE-2 and PE-3) was defined as one-third of the difference

in accuracy between the two extreme anchor points (0.51). With

this approach, accuracies were equated for the first three bins

(ts < 1.2, ps > 0.12). Because many fewer subjects reached

the highest level of accuracy in the Flat (5) as compared to the

Hierarchical (15) condition, accuracies were necessarily different

for PE-4 (Figure S1B). Consequently, PE-4 was not included in

the statistical analyses.

Consistent with the results of the time-based analysis, activity

in prefrontal cortex strongly differentiated the Hierarchical

and Flat conditions (Figure 3D). A repeated-measures ANOVA

inclusive of PMd and prePMd demonstrated both ROI 3 learning

set [F(1,19) = 12.4, p = 0.002] and ROI 3 performance epoch

[F(2,38) = 12.6, p = 0.0001] interactions. These differences

were confirmed by direct post-hoc comparison of Hierarchical

and Flat activity in prePMd, which was significant for PE-2

and PE-3 (ts > 1.8, ps < 0.05) but not for PE-1 [t(32) = �0.5,

p = 0.33]. By contrast, activation in the more caudal PMd did

not reliably differ between learning sets for any performance

epoch (ts < 1.5). Thus, results from the performance based anal-

ysis corroborated those from the time-based analysis: Hierar-

chical versus Flat differences in prePMd emerged late in learning
Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc. 319



Figure 4. Scatter Plots Demonstrating Brain-Behavior Correlations

The x axis of each plot shows the integrated percent signal change (iPSC) for

correct trials only versus baseline for the beginning phase of learning collapsed

across rule set (Hierarchical/Flat) and accuracy (correct/error) for PMd (left

plots) and prePMd (right plots). This early learning activation across rule sets

is plotted against the difference in learning trial (row 1), terminal accuracy

(row 2), max first derivative (3rd row), and max second derivative (row 4)

between Hierarchical and Flat rule sets.
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because of a decline in activation for the Flat relative to the

Hierarchical rule set.

Correlation of Activation in prePMd and Behavior
during Hierarchical Learning
Does the activation early in learning for both Flat and Hierarchical

sets relate to successful higher order rule learning? The previous

two hypotheses make opposite predictions concerning the locus

of such a relationship. If first-order rules must first be learned in

order for second-order rules to be acquired, early activity in

areas supporting first-order rule acquisition (PMd) should be

predictive of subsequent second-order rule learning. Con-

versely, if first-order and second-order rules are explored in

parallel, early activity in areas supporting second-order rule

learning (prePMd), but not first-order rule learning (PMd), should

be predictive of successful second-order rule acquisition. In

order to address this question, we conducted between-subjects

correlations of the mean activation at the Begin phase of

learning, across Hierarchical and Flat sets, with the behavioral

differences between Hierarchical and Flat learning sets (i.e.,

learning trial, terminal accuracy, max first, and max second

derivatives) that mark the successful acquisition of the higher

order rules. As depicted in Figure 4, Begin phase activation in

prePMd correlated reliably with the difference in learning trial
320 Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc.
[R = .51; t(16) = 2.3, p < 0.05], terminal accuracy [R = .56;

t(19) = 2.9, p < .05], and max first derivative [R = .51; t(19) =

2.5, p < 0.05]. A positive trend was also evident for the fourth

marker, the max second derivative [R = .39; t(19) = 1.8, p =

0.09]. However, no such correlations were significant for PMd

(Rs < .3, ps > .21). Thus, these data provide evidence that early

activation in prePMd and not PMd reflects search for higher

order rules.

Time- and Performance-Dependent Analysis
of Learning in Striatum
Consistent with past work on reinforcement learning (Cohen and

Frank, 2009; Cools et al., 2002; Dayan and Balleine, 2002; Frank

and Claus, 2006; Hadj-Bouziane et al., 2003; Murray et al., 2000;

Packard and Knowlton, 2002; Schönberg et al., 2007; Seger,

2008; Sutton and Barto, 1998; Toni et al., 1998; Tremblay

et al., 1998), the whole-brain analysis reliably identified regions

in the striatum—both caudate and anterior putamen—that

were active during learning relative to baseline (Figure 5). Unlike

PMd and prePMd, stimulus-related activity (prior to feedback) in

striatum increased with learning of the Hierarchical but not Flat

set, [F(1,19) = 6.9, p < 0.05) without significant interactions

between conditions (Fs < 1.5, ps > 0.2). Post-hoc comparison

revealed a difference between rule sets by the end of learning

in the left putamen [t(19) = 2.2, p < 0.05] and right caudate

[t(19) = 2.4, p < 0.05], and a trend difference in the left caudate

(t(19) = 1.9, p = 0.07; Figure 5A). Performance-based analysis

was consistent with these effects (see Figure S3).

Effective Connectivity Analysis of the Frontostriatal
Network
Learning of first-order stimulus-response associations has been

consistently shown to depend on dynamic interactions between

striatum and cortex (Hadj-Bouziane et al., 2003; Murray et al.,

2000; Packard and Knowlton, 2002; Seger, 2008; Toni et al.,

1998; Tremblay et al., 1998). Thus, we evaluated effective con-

nectivity between them using Granger causality (GC), a method

for determining whether the BOLD time series in one region helps

to predict the time series in another (Goebel et al., 2003; Kayser

et al., 2009; Roebroeck et al., 2005) (see Supplemental Informa-

tion for additional analysis). PMd and prePMd were Granger

causal for the bilateral caudate (ps < .0005; Figure 5B).

Conversely, activity in bilateral putamen was Granger causal

for both PMd and prePMd (ps < 0.05). Importantly, none of the

above effects differed significantly between rule sets (ps > 0.18).

DISCUSSION

In the present study, we contrasted learning of two rule sets in

which only the Hierarchical set afforded the opportunity to learn

an abstract, second-order rule. Broadly, results from this exper-

iment provide fundamental insights into the way that humans

approach novel learning problems. In summary: (1) Participants

were capable of rapidly acquiring abstract rules when they

were available. (2) Activation was evident in both PMd and

prePMd early in learning but declined in the more rostral prePMd

by the end of learning of the Flat set, which contained no second-

order rules. (3) Activation early in learning in prePMd across



Figure 5. Striatum/GC Analyses

(A) Areas within the striatum demonstrating a posi-

tive main effect of task were identified in both

caudate and putamen. Across time, the integrated

percent signal change (iPSC) in both areas tended

to be greater in the Hierarchical than the Flat case

(*p < 0.05; �p < 0.10, where error bars represent

the standard error of the mean).

(B) Despite parallel striatal univariate changes,

Granger causality analysis demonstrated that

BOLD signal in putamen (Pt) was reliably Granger

causal (*p < 0.05; **p < 0.0005) for activity within

PMd and prePMd, which was in turn reliably

Granger causal for activity in the caudate (Cd).

(To PMd and prePMd from left putamen: GC =

0.016 and GC = 0.003, respectively; from right pu-

tamen: GC = 0.026 and GC = 0.007, respectively.

From PMd and prePMd to left caudate: GC =

0.012 and GC = 0.013, respectively; to right

caudate: GC = 0.022 and GC = 0.013, respec-

tively.) Slices show the main effect of task

(T values indicated by the color bar), with Pt and

Cd regions of interest designated by the small

circles at the origins/terminations of the GC

arrows. See also Figures S3 and S4 and Table

S1 for further details.
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Hierarchical and Flat sets, but not in PMd, was correlated with

behavioral differences between the Hierarchical and Flat

learning curves. (4) Striatum showed greater activation by the

end of learning for the Hierarchical relative to the Flat set, but

the dynamics of frontostriatal interactions did not differ between

sets—i.e., for both, the putamen influenced, whereas caudate

was influenced by, activation in PMd and prePMd. These results

suggest that from the outset of learning the search for relation-

ships between context and action may occur at multiple levels

of abstraction simultaneously and that this process differentially

relies on systematically more rostral portions of frontal cortex

for the discovery of more abstract relationships. However,

dynamic interactions between striatum and frontal cortex that

support reinforcement learning appear common across levels

of abstraction.

Growing evidence suggests that the frontal cortex may pos-

sess a rostro-caudal organization whereby more rostral regions

support cognitive control involving progressively more abstract

representations (Badre, 2008; Badre and D’Esposito, 2007;

Badre et al., 2009; Botvinick, 2007, 2008; Buckner, 2003; Bunge

and Zelazo, 2006; Christoff and Keramatian, 2007; Koechlin and

Jubault, 2006; Koechlin et al., 2003; Koechlin and Summerfield,

2007; Petrides, 2006; Race et al., 2008). An important question

left open by these previous experiments is the extent to which

this rostro-caudal organization can be leveraged to facilitate

learning of abstract rules. Consistent with past work, our results

demonstrate that a differentiation does indeed emerge rostrally,

in prePMd, when a second-order rule must be learned through

reinforcement rather than explicit instruction. However, critical

to understanding the mechanisms of abstract rule learning is

understanding how this difference arises. In particular, there

are at least two qualitatively distinct ways to account for the

emergence late in learning of a difference in activation between

the Hierarchical and Flat rule sets in prePMd: (1) PrePMd might
be recruited to search for and execute a second-order rule

only after first-order rules have been learned. (2) PrePMd might

be directly involved in the search for, as well as the execution

of, second-order policy from the outset of learning and decrease

its involvement to the extent that such rules are not rewarded.

Our data are consistent with the second of these proposals

and inconsistent with the first. Specifically, activation is evident

early in prePMd, before all first- or second-order rules are known

and, in the case of the Flat set, even when no second-order rules

can be known. Moreover, this early activation in prePMd, across

learning conditions (i.e., Flat or Hierarchical), correlates with

discovery of second-order rules when they are available, indi-

cating that this activation reflects neural processes related to

the early search for abstract rules. Thus, the decline in activation

in prePMd during the Flat set, when second-order rules are not

available, may reflect the attenuation of higher-level search

when higher-order rules are not rewarded.

Following from this account, this result provides potential

insight into another fundamental question concerning a putative

rostro-caudal hierarchical organization of the frontal cortex;

namely, to the extent that the brain does possess such an archi-

tecture, what advantages might it convey over other schemes?

In particular, it has been demonstrated that though complex

action may be represented hierarchically (i.e., in terms of goals,

subgoals, etc.), the existence of hierarchical representations

does not require that the action system itself segregate these

representations among spatially separate pools of neurons (Bot-

vinick and Plaut, 2004; Botvinick, 2007). One possible advantage

of having such an organization, then, is that structural hierarchies

can facilitate learning of tasks that require acquisition of abstract

policy relationships (Paine and Tani, 2005). One reason for such

efficiency could be the capability of hierarchical structures to

search independently for rules at multiple levels of abstraction

(i.e., in parallel). The present results are consistent with this
Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc. 321
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perspective in that frontal cortex appears to leverage its hierar-

chical organization in order to engage in search at multiple levels

of abstraction from the outset of learning.

Interestingly, these results also provide a potential account of

the classical learning versus execution dissociation between

PFC and PMd during rule learning. In particular, it has been

widely noted that with substantial training, activity in PFC

declines and activity in PMd is sustained (Brasted and Wise,

2004; di Pellegrino and Wise, 1993; Hadj-Bouziane et al., 2003;

Hoshi and Tanji, 2006, 2007; Lucchetti and Bon, 2001; Mitz

et al., 1991; Passingham, 1988, 1989; Petrides, 1985a, b, 1987;

Boettiger and D’Esposito, 2005). Indeed, lesioning PFC after

learning does not impair subsequent execution of the rules

(Bussey et al., 2001; Petrides, 1985b). In the present study,

learning the Flat rule set is analogous to these past studies of

rule learning, given that it involves learning of arbitrary first-order

rules. Indeed, perhaps consistent with these past experiments,

activation declines over the course of learning in prePMd but

not in PMd. However, during learning of the Hierarchical set,

activation does not decline but is sustained in prePMd

throughout learning. Thus, past distinctions between learning

and execution of rules in the frontal cortex may also reflect the

fact that most rules in these studies are first-order policy, by

our definition, and so may not have been abstract enough to

require sustained involvement of the PFC.

Finally, these results have implications for the study of

changes in the frontal cortex and striatum during reinforcement

learning (Brasted and Wise, 2004; Fujii and Graybiel, 2005; Loh

et al., 2008; Pasupathy and Miller, 2005). At least two alternative

models have been proposed with respect to frontostriatal

dynamics during learning. In the first, frontal cortex serves to

uncover patterns in the environment that are subsequently

consolidated in the basal ganglia (Graybiel, 1998). This hypoth-

esis predicts that cortical activity should precede that of

the striatum. Alternatively, the striatum may uncover stimulus-

reward contingencies that merit more dedicated cortical pro-

cessing (Houk and Wise, 1995). This alternative hypothesis

appears to predict the reverse, namely that basal ganglia activity

should precede that of the frontal cortex. These timing differ-

ences have been suggested not only to occur across the course

of learning, with either cortex or basal ganglia instructing the

other across this longer time scale, but also to potentially reflect

(and possibly to result from) moment-by-moment precedence of

activity (Houk and Wise, 1995).

Previous results in the nonhuman primate have supported

both sides of this controversy. Pasupathy and Miller (2005) found

that recordings from both area 9/46 of the prefrontal cortex and

the head and body of the caudate were consistent with the latter

hypothesis in macaques performing a well-learned serial

reversal task. In their study, caudate activity reliably preceded

that of the PFC throughout learning, but moved relatively earlier

in time as learning proceeded. However, Fujii and Graybiel (2005)

found that local field potentials in prefrontal cortex peaked earlier

than LFPs in the striatum on single trials as macaques performed

a well-learned serial saccade task (also see Brasted and Wise,

2004). Our effective connectivity results point to a potentially

more complex system in which the frontal cortex both influences

and is influenced by the striatum during rule learning. Moreover,
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we demonstrate that this temporal relationship between BOLD

signal in the putamen, cortex, and caudate is consistent across

the duration of learning. Such a dynamical system is broadly

consistent with a range of proposals in the reinforcement

learning literature that assume functional divisions both within

the striatum and within cortex itself and that acknowledge

dynamic interactions between them such that the striatum can

influence cortical representations—e.g., through updating/

gating—and can likewise be influenced by what the cortex repre-

sents—e.g., for the purposes of learning and action selection

(Alexander et al., 1986; Daw et al., 2005; Frank et al., 2004; Grahn

et al., 2008, 2009; Hazy et al., 2007; Houk and Wise, 1995;

O’Reilly and Frank, 2006; O’Reilly et al., 2007; Seger and

Cincotta, 2005, 2006).

In conclusion, our findings suggest that the rostro-caudal

architecture of the frontal cortex may support rapid learning

of action rules at multiple levels of abstraction. When encoun-

tering a novel behavioral context, we may search for relationships

between context and action at multiple levels of abstraction

simultaneously, a capability that underlies our remarkable behav-

ioral adaptability and our capacity to generalize our past learning

to new problems. Hence, how we address novel problems in

reasoning, decision-making, and selecting actions under uncer-

tainty may very well reflect both the adaptability and the con-

straints conferred by the basic functional organization of the

frontal cortex.
EXPERIMENTAL PROCEDURES

Participants

Twenty right-handed, native English speakers (eight female; ages 18–31 years)

with normal or corrected-to-normal vision were enrolled in the study. Data from

an additional six participants was collected but excluded because of excessive

head motion (>3 mm: four subjects) or an inability to learn above chance in either

condition (two subjects). All participants underwent prescreening for neurolog-

ical or psychological disorders, use of medications with potential vascular or

CNS effects, and any contraindications for MRI. Normal color vision was

verified for all subjects as assessed by the Ishihara test for color deficiency.

Participants received a base payment of approximately $56 and an average

bonus of $20.57 for correct responses during the task (see Behavioral Proce-

dures). Informed consent was obtained from subjects in accordance with

procedures approved by the Committees for Protection of Human Subjects at

the University of California, Berkeley and University of California, San Francisco.

Logic and Design

For investigating the discovery of abstract rules, a reinforcement learning

task was designed that required the learning of two rule sets, one of which

contained a higher-order rule structure (Hierarchical rule set) and one that

could only be learned as one-to-one mappings between stimuli and responses

(Flat rule set). Participants were not given an indication through an instruction

or any other cue that a higher-order structure existed in one of the rule sets.

Moreover, trials for both rule sets were identical in terms of all stimulus presen-

tation parameters, instructions, and response-reward contingencies.

Each rule set was learned over the course of 360 individual learning trials

divided equally into six fMRI scan runs. Each trial commenced with the presen-

tation of a stimulus display consisting of a nonsense object (i.e., without a

real-world counterpart) appearing in one of three orientations (up [0�], left

[�90�], or oblique [23�]) and bordered by a colored square. The stimulus

display subtended �10� of visual angle. Two colors, three object shapes,

and three orientations were used for each rule set, the conjunction of which re-

sulted in 18 unique stimulus displays (i.e., three shapes 3 three orientations 3

two colors). Each of the 18 unique displays occurred 20 times across the six
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fMRI runs for a given rule set. The specific colors and shapes differed across

the two rule sets within subject and were counterbalanced for rule set across

subjects.

The object and square appeared together for 1 s and were then replaced

by a green fixation cross that appeared for up to an additional 2 s. While the

stimulus display or green fixation cross was present, the participant could

respond with one of three buttons using the index, middle, or ring fingers of

his right hand. Once a response was made or 3 s had passed without

a response, the fixation cross became red and no further responding was

allowed. If a participant had not responded by the 3 s deadline, that trial was

scored as incorrect. The red fixation cross following a response or upon

reaching the response deadline was presented for either 0, 1, or 2 s, after

which feedback was provided in the form of an auditory tone. The variable

interval permitted estimation of the BOLD response to feedback independent

from that to the stimulus display.

A pure high tone (750 Hz) indicated a correct response, and a buzzing tone

(combination of 300 and 400 Hz pure tones) indicated an incorrect response.

Participants were given a $0.05 bonus reward for each correct response.

A running total bonus was provided at the end of each run. After feedback,

the red fixation cross remained on the screen for a variable null intertrial interval

(mean 1.5 s). The order of trials and duration of intertrial intervals within a

block was determined by optimizing the efficiency of the design matrix so as

to permit estimation of the event-related response (Dale, 1999). Efficiency

was equated across rule sets, and the order of rule set learning (i.e., whether

Hierarchical or Flat was learned first) was counterbalanced across partici-

pants.

For both rule sets, participants were given the same instruction. No indica-

tion was given that a higher-order relationship existed or that they should

search for an abstract rule. Participants did not practice the task but they

were allowed to fully familiarize themselves with all 18 stimuli they would

encounter for a given rule set prior to conducting the learning trials for that

rule set. Hence, there were no differences in any stimulus presentation param-

eters or instructions between the rule sets. Where the two rule sets differed

was simply in the arrangement of mappings between stimulus displays and

responses (Figure 1). For the Hierarchical set, the mappings between the

18 stimulus displays and 3 responses were ordered such that in the context

of one colored box, shape fully determined the response. In other words,

each of the three shapes corresponded to one of the three buttons regardless

of the orientation of the object. Conversely, in the context of the other color,

orientation fully determined the response. Thus, a second-order rule, linking

color and dimension, determined the relevant set of first-order rules that linked

shape and response or orientation and response. For the Flat set, the arrange-

ment of responses was such that no such higher-order relationship existed.

Thus, each of the 18 first-order rules linking a unique stimulus display with

one of the three responses had to be learned individually. Critical to the logic

of the experiment, the Hierarchical set could be learned as 18 first-order rules,

if participants could not discover the higher-order relationship. By contrast, the

Flat structure did not afford the opportunity to acquire second-order rules and

so had to be learned as a set of one-to-one mappings between stimulus and

response.

In counterbalancing the specific mappings between stimulus displays and

responses across subjects, two additional constraints were applied beyond

those listed above. First, all responses were represented equally across the

entire set. Second, given that three of the specific object-orientation combina-

tions in the Hierarchical learning set had the same response regardless of

colored box (i.e., those cases in which the orientation and shape cued

congruent responses), we ensured that three object-orientation combinations

also shared a response across colored boxes in the Flat set, equating this

feature of the rule sets.

Behavioral Analysis

Learning curves were calculated with a state-space modeling procedure

(Smith et al., 2004) that estimates the probability of a correct response on

each trial as a function of a latent Gaussian state process (i.e., the state of

knowledge the subject) and an observable Bernoulli response process (i.e.,

the responses of the subject). In other words, the model uses the learner’s

trial-by-trial responses (either correct or incorrect) to estimate his knowledge
about the task over time. In contrast with ‘‘sliding average’’ or other methods

of computing learning curves, this approach allows one to define a confidence

interval associated with the estimate of learning on each trial. Thus, this

method produces a ‘‘learning trial,’’ or the trial at which the confidence interval

no longer encompasses chance performance. We note that because this

method estimates a single value for the variance of the Gaussian state process

across learning, it does not incorporate details of the task or make assump-

tions about hierarchical learning. Learning curves with this procedure were

calculated both for the entire rule set and also for each of the 18 rules individ-

ually based on the 20 encounters with a particular stimulus display. In addition

to the behavioral analyses described below, these curves were used for the

fMRI analysis (see below).

On the basis of learning estimates calculated with this approach, we

focused our behavioral analysis on four components of the curve: (1) the

learning trial, as described in the preceding paragraph; (2) the terminal

accuracy (i.e., the probability of a correct response on the final trial), which

is related to the degree of learning at the conclusion of the session; (3) the

maximal first derivative of the learning curve, which serves as an index of

the maximal speed of learning over the session; and (4) the maximal second

derivative of the curve, which defines the maximal rate of change in the

learning rate over the session.

We further conducted a model-based analysis in order to explicitly assess

the shape of the learning curves for the Hierarchical and Flat learning sets.

In particular, we fit a sigmoid function defined as follows:

by =
1

ð1 + eaðx�bÞÞ (Equation 1)

both to the learning curves, and directly to the subject’s binary responses

based on Bernoulli assumptions. In this function, a reflects the slope of the

sigmoid and b defines the temporal offset relative to the start of the learning

session. A step-wise function will have a steep slope (large a), and faster

learning will have a shorter offset (smaller b). Parameters (a and b) were

estimated with a nonlinear least-squares data fit (the Matlab function

‘‘nlinfit.m’’; http://www.mathworks.com). Goodness of fit was assessed using

a c2 criterion:

c2 =
X

i

ðyi � byiÞ
2

byi

(Equation 2)

where yi represents the probability of a correct response at time i, as deter-

mined by the learning curve, and ŷi represents the sigmoid-derived estimate

of this value. We did not include an additional parameter to allow for variation

in asymptotic performance. Because the rules are deterministic and occupy

a finite space, there is not an a priori reason to believe that learning in the

Flat case should asymptote below perfect performance, rather than simply

taking longer because of the larger number of individual stimulus-response

relationships that must be learned.

MRI Procedures

Whole-brain imaging was performed on a Siemens 3T TIM Trio MRI system

with a standard 12-channel head coil. Functional data were acquired with

a gradient-echo echo-planar pulse sequence (TR = 2 s, TE = 28 ms, flip

angle = 90�; 29 axial slices, matrix = 128 3 128, FOV = 230 3 230 mm, slice

thickness = 3 mm, 203 volume acquisitions per run). High-resolution

T1-weighted (MP-RAGE) anatomical images were collected for anatomical

visualization. Head motion was restricted with firm padding that surrounded

the head. Visual stimuli projected onto the screen were viewed through a mirror

attached to the head coil. Auditory feedback was presented through Siemens

headphones provided as a stock component with the Trio scanner. All exper-

imental scripts were programmed and run on a Macintosh computer with the

Psychophysics Toolbox in MATLAB (http://psychtoolbox.org/).

fMRI Analysis

Functional imaging data were processed with SPM2 (Wellcome Dept. of

Cognitive Neurology, London). After quality assurance procedures for assess-

ment of outliers or artifacts in volume and slice-to-slice variance in the global

signal, functional images were corrected for differences in slice acquisition
Neuron 66, 315–326, April 29, 2010 ª2010 Elsevier Inc. 323

http://www.mathworks.com
http://psychtoolbox.org/


Neuron

Frontal Cortex and Abstract Rule Learning
timing by resampling all slices in time to match the first slice, followed by

motion correction with sinc interpolation across all runs. The mean functional

image was then coregistered with the high-resolution MP-RAGE anatomical

image. After normalizing the MP-RAGE to MNI stereotaxic space, we applied

the same normalization parameters (determined by a 12-parameter affine

transformation along with a nonlinear transformation using cosine basis

functions) to each of the realigned functional images. Images were resampled

into 2 3 2 3 2 mm voxels and then spatially smoothed with an 8 mm FWHM

isotropic Gaussian kernel.

Statistical models were constructed under the assumptions of the general

linear model. For time-based analyses, we evaluated each of the 12 �6 min

runs that comprised the experiment with a separate set of four regressors.

(Out of the 20 subjects 3 12 runs/subject = 240 total runs, seven individual

runs were excluded because of movement artifact.) These four regressors

consisted of the onset times for correct and incorrect responses, divided by

whether they represented the appearance of the stimulus or the succeeding

feedback tone. Subsequent contrasts treated the first, middle, and final two

runs for the Hierarchical and Flat conditions as ‘‘Begin,’’ ‘‘Middle,’’ and

‘‘End,’’ respectively. These contrasts, and all subsequent analyses, were

limited to correct trials only. For performance-based analyses, each of the

12 runs could be defined by up to eight regressors, once again representing

the onset times for correct and incorrect responses but divided by whether

performance was in the first, second, third, or fourth performance level. As

described in Results, the first performance level ranged from an accuracy of

0.0 to the median probability across subjects of a correct response at the

learning trial (0.42). The fourth performance level ranged from the median

terminal accuracy (0.70) to perfect accuracy. The difference between the

median probability of a correct response at the learning trial, and that at the

terminal accuracy, was divided again such that performance level two ranged

from the medial learning trial accuracy to one-third of this difference (0.51), and

performance level three covered the range occupied by the other two-thirds of

this difference. As noted in Results, because fewer subjects reached the

highest level of accuracy in the Flat (5) as compared to the Hierarchical (15)

condition, accuracies could not be well-matched for PE-4 (Figure S1B), and

our analyses instead focused on the other performance epochs.

Statistical effects were estimated with a subject-specific fixed-effects

model, with session-specific effects and low-frequency signal components

(<0.01 Hz) treated as confounds. Linear contrasts were used for obtaining

subject-specific estimates for each effect. These estimates were entered

into a second-level analysis treating subjects as a random effect, with a

one-sample t test against a contrast value of zero at each voxel. Voxel-based

group effects were considered reliable to the extent that they consisted of vox-

els that exceeded an FDR-corrected threshold of p < 0.05. We note that the

use of FDR here makes an assumption of independence among voxels that

is probably violated (Chumbley and Friston, 2009), and consequently, although

controlling the false discovery rate for voxels, this correction may not do so for

regions. For the purpose of additional anatomical precision, group contrasts

were also rendered on an MNI canonical brain that underwent cortical ‘‘infla-

tion’’ using FreeSurfer (CorTechs Labs) (Dale et al., 1999; Fischl et al., 1999).

Whole-brain voxel-wise event-related analysis was supplemented by region

of interest (ROI) analysis that estimated the shape of the change in BOLD

response from the onset of each trial event. ROIs were defined in two ways

that were independent and unbiased with respect to the tests of interest: (1)

the ROIs for PMd, prePMd, IFS, and FPC were taken from Badre and D’Espo-

sito (2007) on the basis of their association with first, second, third, and fourth

order rule execution, respectively; (2) all other ROIs were defined as all signif-

icant voxels within 8 mm of a maximum chosen from the contrast of all condi-

tions versus fixation baseline in the current experiment. Selective averaging

with respect to peristimulus time was conducted with the Marsbars toolbox

(Brett et al., 2002, 8th International Conference on Functional Mapping of

the Human Brain, abstract), permitting assessment of the signal change asso-

ciated with each condition. Integrated percent signal change was computed

on the basis of the integral of the peak time point—defined neutrally at 4 s

on the basis of the average across conditions for time points up to 14 s after

trial onset—±2 time points, relative to an implicit baseline of zero. All ROI

data were subjected to repeated-measures analyses of variance (ANOVA).

Paired t tests were applied for all time-based post hoc analyses. For perfor-
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mance-based analyses, we employed a more conservative post hoc measure

(a weighted, unpaired t test) to account directly for variability in the number of

trials within each performance level for each subject (Figure S1).

In order to evaluate the influence of each of these ROIs on the others, we

used bivariate Granger causality. This technique determines whether the

time series in one voxel or region helps to predict upcoming time points in a

second time series; if so, that voxel or region is said to be Granger causal

(GC) for the second. The complexity of the underlying model that permits these

computations can vary. In this case, as in our previous work, we restricted our

analysis to linear models (see Kayser et al. [2009] for full details).

To generate the relevant time series, we used each subject’s normalization

parameters to project all of our ROIs into the native space. We then applied

these ROIs to the relevant subject’s realigned functional images in order to

define the time course for each significant voxel, within each ROI, for each

of that subject’s runs. After computing the run-by-run GC values for each

subject, we computed the median of each subject’s ROI-by-ROI GC value

across each condition (Hierarchical versus Flat), as there were no significant

differences between GC values for the first two, last two, and all six runs

(data not shown). We performed Wilcoxon’s signed rank tests for each

ROI-ROI pair to determine significance across subjects (see Supplement for

a further description of GC analyses).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, four figures, and

one table and can be found with this article online at doi:10.1016/j.neuron.

2010.03.025.
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Supplemental Results 

Hippocampal activation during learning 

 Although our focus was primarily on frontal cortex and striatum, we also 

analyzed changes in BOLD activity in the hippocampus during learning.  Bilateral 

hippocampal ROIs (XYZ = -24 -10 -22, 28 -8 -22) deactivated reliably relative to 

baseline (Figure S2), and demonstrated a strong effect of learning set (F(1,19) = 17.3, p = 

0.0005).  A significant interaction between ROI and set (F(1,19) = 6.0, p < 0.05) was 

reflected in significantly less negative BOLD signal in R hippocampus during the Middle 

and End epochs (ts > 2.3, ps < 0.05).  Performance-based analysis revealed no effect of 

learning set (F(1,19) = 1.7, p = 0.2), and only a trend interaction between ROI and 

learning set (F(1,19) = 3.7, p = 0.07).  

 

Performance-based analysis of learning in striatum 

To address the possibility that differences in striatal activation emerging late in 

learning between the Hierarchical and Flat sets were related to greater accuracy during 

the Hierarchical condition, we segregated the activity within caudate and putamen by 

performance as described in the Results. Across left striatum, repeated measures 

ANOVA revealed a trend effect of rule set (F(1,19) = 3.4, p = 0.08; Figure S3).  When 

bilateral striatal ROIs were included, this effect of rule set became significant (F(1,19) = 

5.0, p < 0.05). 

 

Effective connectivity analysis of the fronto-striatal network. 

To gain insight into the nature of the interactions between the striatum and PFC 

during learning, we evaluated the connectivity between them using Granger causality 

(GC).  GC is a signal processing technique in which multivariate autoregressive (MVAR) 

models of a time series are used to predict upcoming time points.  If the MVAR model of 

a time series of interest more reliably predicts upcoming time points when a second time 



series is incorporated, the second time series is said to be Granger causal for the first.  

Because GC takes as input the entire time series, it is possible that our GC values reflect 

different aspects of the response (e.g. feedback), rather than activity related to stimulus 

processing.  If these GC results are related to stimulus processing – i.e. if one time series 

is truly to be predictive for another – a necessary but not sufficient condition is that the 

first time series must not follow the one it influences during the epoch of interest.  

Specifically, any Granger causal influence for which the underlying time series lagged 

the activity it was predicting, as assessed here via time to peak BOLD response, would be 

strongly suspect.   

To assess these timing differences, we computed the impulse response function 

for each of four conditions: Hierarchical, stimulus-onset (HSO); Flat, stimulus-onset 

(FSO); and, for comparison, Hierarchical, feedback-onset (HFO); and Flat, feedback-

onset (FFO).  We then found the best-fitting difference-of-gamma functions for these 

points (by using Matlab’s nlinfit function to find optimal parameters for the spm_hrf 

function implemented in SPM2) for both the average response across all subjects (Figure 

S4, column 1) and the individual responses for each subject – in the latter case, in order 

to generate a distribution for the timing of the peak response (Figure S4, column 2).  As 

evident in Figure S4, the timing of BOLD activity accords with the GC findings 

described in the main text of the report.  The time courses for activity within these four 

ROIs collectively peak at different times (HSO:  X(5,90) = 19.7, p = 0.001; FSO: X(5,73) 

= 28.7, p = 3 x 10-5; HFO: X(5,98) = 12.2, p = 0.03; FFO: X(5,85) = 12.2, p = 0.03, all by 

non-parametric one-way ANOVA).  Moreover, the two frontal ROIs reliably lead the 

bilateral caudate for HSO and FSO, while PMd reliably lags the bilateral putamen for 

HFO and FFO (Table S1).  For none of these comparisons is there a significant timing 

difference in a direction contradicting the GC result.  Additionally, these (univariate) 

analyses are most consistent with GC between frontal cortex and body of the caudate 

driven by the stimulus epoch, whereas GC between putamen and frontal cortex may be 



more prominent during feedback for PMd (and not strongly differentiated by either epoch 

for prePMd). 



Figure S1: 

Plots illustrating the variance in learning behavior. (a) The individual learning curves for 

all subjects in both learning sets provide a sense for the variability in learning.  Colors 

correspond to individual subjects to permit comparison between the Hierarchical (left) 

and Flat (right) plots. The same color is used for a given subject on both plots and 

assignment of color to a participant was based on Hierarchical terminal accuracy from 

lowest (cool) to highest (hot). (b) Accuracy estimates (top row) are plotted across the 

three temporal epochs (left column) and four performance epochs (right column) for the 

Flat (dark gray) and Hierarchical (light gray) conditions.  Error bars represent the 95% 

confidence interval for the mean.  It should be noted that because of overall differences in 

performance across learning sets, accuracies for PE-4 could not be matched. 

Consequently, statistical analyses focused on PE-1 through PE-3. The number of correct 

trials contributing to the data for each epoch is also depicted using a box-whisker plot 

(bottom row).  Each box has lines representing the lower quartile, median, and upper 

quartile values; the whiskers define the extent of the data, with outliers marked by 

crosses.  The number of subjects contributing to each bin is provided at the top of each 

box-whisker plot. (* p < .05) 

Figure S2: 

Results from ROI analysis of the hippocampus. Graphs plot integrated percent signal 

change (iPSC) from two hippocampal ROIs (XYZ = -24 -10 -22, 28 -8 -22) for correct 

trials only during the Hierarchical and Flat learning sets, segregated by (a) time and (b) 

performance.  Error bars represent the standard error of the mean. 

Figure S3: 

Plots from performance-based analysis of the left striatum. Graphs plot integrated percent 

signal change (iPSC) within left caudate and left putamen for correct trials only during 



Hierarchical and Flat learning sets, segregated by performance.  Error bars represent the 

standard error of the mean. 

Figure S4: 

Time course analyses for each of four data types: (a) hierarchical stimulus-onset, (b) flat 

stimulus-onset, (c) hierarchical feedback-onset, and (d) flat feedback-onset, abbreviated 

in the text as HSO, FSO, HFO, and FFO, respectively.  Data in the first column represent 

the impulse response functions color-coded for each of the six ROIs (bilateral putamen, 

PMd, prePMd, and bilateral caudate – see legend at upper right).  The points within these 

graphs in the first column represent average values at each time point across all 20 

subjects ± the standard error of the mean; the curves indicate the best-fitting difference-

of-gamma functions.  Data in the second column represent the distribution of the time-to-

peak across subjects.  For each box plot, the lines represent the lower quartile, median, 

and upper quartile of the values; the whiskers extending from the end of each box 

represent the extent of the rest of the data, with two exceptions: for the FSO case, 

additional outlier points are present for the right putamen (in blue) at 7.9 seconds, and for 

the prePMd (in magenta) at 6.9 and 7.7 seconds. 

 



 Table S1: 

Timing differences, in seconds, between peak responses in frontal and striatal ROIs.  

Negative values indicate that BOLD activity in the striatal region (either putamen or 

caudate) peaks before activity in the cortical region (either PMd or prePMd), while 

positive values indicate the opposite.  Significance was quantified using Wilcoxon’s rank 

sum test (*: p < 0.05; **: p < 0.005; ~: p < 0.10). 
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