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SUMMARY

Although we often encounter circumstances with
which we have no prior experience, we rapidly learn
how to behave in these novel situations. Such adap-
tive behavior relies on abstract behavioral rules that
are generalizable, rather than concrete rules map-
ping specific cues to specific responses. Although
the frontal cortex is known to support concrete rule
learning, less well understood are the neural mecha-
nisms supporting the acquisition of abstract rules.
Here, we use a reinforcement learning paradigm to
demonstrate that more anterior regions along the
rostro-caudal axis of frontal cortex support rule
learning at higher levels of abstraction. Moreover,
these results indicate that when humans confront
new rule learning problems, this rostro-caudal divi-
sion of labor supports the search for relationships
between context and action at multiple levels of
abstraction simultaneously.

INTRODUCTION

Rapid adaptation to novel circumstances is a hallmark of intelli-
gent behavior. This ability partially requires the representation of
rules that can associate a context with a specific behavioral
response. However, adaptive behavior further requires the ability
to generalize rules to novel circumstances. For example, we can
rapidly work out an unusual mechanism by which a door is
opened, such as pulling a cord rather than turning a knob,
even if we have no prior experience using that mechanism to
open a door. Such rule generalization depends on the discovery
of abstract relationships between context and classes of action
that are not dependent on a one-to-one mapping between
a stimulus and a particular motor response.

Lateral frontal cortex, and the prefrontal cortex (PFC) in partic-
ular, has an established role in representing rules for action and
supporting adaptive behavior (Badre and Wagner, 2004; Bunge,
2004; D’Esposito et al., 1995; Duncan, 2001; Miller and Cohen,
2001; Passingham, 1993; Petrides, 2005; Stuss and Benson,
1987; Wallis et al., 2001). Current models of PFC conceptualize
this function in terms of cognitive control, defined as the ability

of frontal neurons to represent contextual information in order
to bias selection of appropriate action pathways over competi-
tors (Badre and Wagner, 2006; Botvinick et al., 2004; Braver
et al., 2003; Cohen et al., 1990; Miller and Cohen, 2001; O’Reilly
and Frank, 2006). Moreover, frontal cortex, in concert with
striatum, is critical for the acquisition of behavioral rules (Asaad
et al., 1998; Passingham, 1989; Petrides, 1987; White and
Wise, 1999). However, previous studies of learning have
primarily focused on the formation of concrete conditional asso-
ciations between specific stimuli and responses, rather than on
the learning of abstract rules.

The functional organization of frontal cortex may provide clues
as to the mechanisms by which abstract rules are acquired.
Growing evidence indicates that the rostro-caudal axis of frontal
cortex may be organized hierarchically such that neurons in
more anterior regions of frontal cortex process progressively
more abstract representations in the service of cognitive control
(Badre, 2008; Badre and D’Esposito, 2007; Badre et al., 2009;
Botvinick, 2007, 2008; Buckner, 2003; Bunge and Zelazo,
2006; Christoff and Keramatian, 2007; Koechlin and Jubault,
2006; Koechlin et al., 2003; Koechlin and Summerfield, 2007;
Petrides, 2006; Race et al., 2008). In general, hierarchies facili-
tate learning and adapting to novel circumstances because
they have the ability to represent information at multiple, increas-
ingly abstract levels (Chase and Simon, 1973; Estes, 1972; Gick
and Holyoak, 1983; Greeno and Simon, 1974; Lashley, 1951;
Miller et al., 1960; Newell, 1990; Paine and Tani, 2005). Such
abstracted representations are more easily analogized to novel
circumstances, thereby facilitating transfer of knowledge gained
in one context to a new one. Hence, it is reasonable to hypothe-
size that the capacity for rule abstraction afforded by a putative
frontal lobe hierarchy might support rapid adaptive behavior.
However, previous demonstrations of hierarchically arrayed
processors in the PFC have only tested the execution of well-
learned rules, acquired through explicit instruction, and so these
studies have not been designed to address how this functional
organization might be leveraged to facilitate rule discovery.
The current study seeks to fill this gap by investigating reinforce-
ment learning of abstract versus concrete behavioral rules.

A rule can be defined as abstract to the extent that it deter-
mines a set of simpler rules based on contextual information.
This type of abstraction is termed policy abstraction (Badre
et al., 2009; Botvinick, 2008). For example, consider two simple
rules: a circle cues a left-hand response and a triangle cues
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Figure 1. Schematic Depiction of Trial
Events, Example Stimulus-to-Response
Mappings, and Policy for Hierarchical and
Flat Rule Sets

(A) Trials began with presentation of a stimulus fol-
lowed by a green fixation cross. Participants could
respond with a button press at any time while the
stimulus or green fixation cross was present. After
a variable delay after the response, participants
received auditory feedback indicating whether
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the response they had chosen was correct given
the presented stimulus. Trials were separated by
a variable null interval.

(B) Example stimulus-to-response mappings for
the Flat set. The arrangement of mappings for
the Flat set was such that no higher-order relation-
ship was present; thus, each rule had to be learned
individually.

(C) This set of many first-order rules can be repre-
sented as a large, Flat policy structure with only

D

stimuli —»

response determined by orientation)

one level and eighteen alternatives.

(D) Example stimulus-to-response mappings for
the Hierarchical set. Response mappings are
grouped such that in the presence of a red square,

responses — 1 (shape) (orientation) only shape determines the response, whereas in
the presence of a blue square, only orientation
determines the response.

(E) The Hierarchical set can be represented as a
two-level policy structure with a second-order
rule selecting between the shape or orientation

a right-hand response. This first-order policy specifies a one-to-
one relationship between a specific stimulus (i.e., a shape) and
aresponse. However, consider an independent set of first-order
policy, based on size, in which a large stimulus cues a left-hand
response and a small stimulus cues a right-hand response.
Because the shape and size rule sets are independent, both
cannot simultaneously govern responding. For instance, if the
relevant set of first-order policy is unknown, a stimulus that is
both circular and small cues opposing responses. Conse-
quently, a more abstract rule (second-order policy) is required
in order to specify which set of first-order rules (shape or size)
should govern responding in the current context. For example,
framing the stimulus with a red border might indicate that shape
is the appropriate first-order policy, whereas green might
indicate size. Because this second-order policy based on color
specifies a class of simpler rule sets (shape or size) rather than
a specific response, it is more abstract.

Using the above definition of abstraction, we designed a rein-
forcement learning task that provides participants an opportu-
nity to acquire an abstract rule (second-order policy). During
fMRI scanning, participants were required to learn two sets
of rules, in separate epochs, that linked each of 18 different
stimuli uniquely and deterministically to one of three button-
press responses (Figure 1). For each rule set, an individual
stimulus consisted of one of three shapes, at one of three
orientations, inside a box that was one of two colors for a total
of 18 unique stimuli (3 shapes x 3 orientations x 2 colors;
Figure 1). Participants were instructed to learn the correct
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mapping sets, and a set of first-order rules then
relating specific shapes or orientations to
responses.

response for each stimulus on the basis of auditory feedback
(Figure 1A).

For one of the two rule sets, termed the “Flat” set, each of the
18 rules had to be learned individually as one-to-one mappings
(first-order policy) between a conjunction of color, shape, and
orientation and a response (Figures 1B and 1C). In the other
set, termed the “Hierarchical” set, stimulus display parameters
and instructions were identical to the Flat set. And, indeed, the
Hierarchical set could also be learned as 18 individual first-order
rules. However, the arrangement of response mappings was
such that a second-order relationship could be learned instead,
thereby reducing the number of first-order rules to be learned
(Figures 1D and 1E). Specifically, in the context of one colored
box, only the shape dimension was relevant to the response,
with each of the three unique shapes mapping to one of the three
button responses regardless of orientation. Conversely, in the
context of the other colored box, only the orientation dimension
was relevant to the response. Thus, the Hierarchical rule set
permitted learning of abstract, second-order rules mapping
color-to-dimension along with two sets of first-order rules
(i.e., specific shape-to-response and orientation-to-response
mappings; Figure 1E).

Critically, all instructions, stimulus presentation parameters,
and between-subject stimulus orderings were identical between
the two rule sets. The Flat and Hierarchical rule sets only differed
in that the organization of mappings in the Hierarchical set
permitted learning of a second-order rule. Hence, these two
sets contrast a learning context in which abstract rules can be
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Figure 2. Behavioral Data

(A) Shown are the learning curve estimates, bounded by a 90% confidence
interval, for the single subject whose learning trials for the Hierarchical and
Flat sets were closest to the group means for each condition (Hierarchical =
64; Flat = 91). Black arrows illustrate the learning trial, at which the lower confi-
dence bound rose above chance performance (33%). Gray arrows highlight
the terminal accuracy.

(B) Subsequent panels depict the correlates of learning + SEM across the
20 subjects for the Hierarchical and Flat sets: the terminal accuracy; the
maximal first derivative of the learning curve, representing the speed of
learning; the maximal second derivative of the learning curve, representing
the rate of change in the speed of learning; and the learning trial (i.e., the value
depicted by the black arrows in A). For three subjects, learning for the Flat set
never rose above chance; these subjects were excluded from the calculation
for the mean Flat learning trial (n = 17). (See also Figure S1 for further behavioral
data.)

discovered with an analogous context in which no such rules can
be learned. Thus, this design provides a means of studying the
neural mechanisms of abstract rule learning.

RESULTS

Behavioral Results

Learning curves were generated based on the estimated proba-
bility of a correct response on each trial along with a 90% confi-
dence interval (see Experimental Procedures and Figure 2A).
Differences in these estimates between the Hierarchical and
Flat rule sets were consistent with the acquisition of generaliz-
able, second-order rules for the Hierarchical set.

First, generalization should make the learning task easier, in
that more of the specific mappings between stimuli and re-
sponses should be acquired. Terminal accuracy was signifi-
cantly higher for the Hierarchical (84%) than the Flat (58%)
rule set [F(1,19) = 26.3, p < .0001; Figure 2B, leftmost panel].
Moreover, a significantly higher proportion of individual rules
were learned in the Hierarchical (72%) than Flat (43%) set
[F(1,19) = 14.6, p < .005]. It should be noted that neither these
effects, nor any others reported here, changed as a function of
which rule set was learned first.

Second, generalization should make learning more efficient,
in that once an abstract rule is acquired for one stimulus, it is
applicable to all others like it. Indeed, learning trial estimates—
defined as the number of presentations of a specific stimulus
before the response associated with that stimulus is known—
came earlier for individual rules in the Hierarchical versus Flat
set [t(19) = 2.1, p = .05; Figure 2B, rightmost panel].

Crucially, the facilitation of learning associated with general-
ization should be specific to the first-order rules entailed by a
learned second-order rule. To test this prediction, we identified
all first-order rules for each subject that were learned above
chance, termed learned first-order rules. We then assumed
that a subject knew a second-order rule associating a color
with either shape or orientation if, in the Hierarchical case, all
nine rules sharing that color were learned first-order rules. We
defined such sets as “known second-order sets.” We note there
was never a case in which all nine rules associated with a given
color were known by the end of learning for the Flat rule set. The
average learning trial for learned first-order rules that were
members of “known second-order sets” in the Hierarchical
condition was reliably earlier in learning than the average learning
trial for learned first-order rules in the Flat condition [t(19) = 3.8,
p < .005]. Importantly, this effect was not driven by the fact
that Hierarchical rules were learned more quickly, on average,
than were Flat rules. Within the Hierarchical condition itself, the
average learning trial for first-order rules that were members of
“known second-order sets” was also reliably earlier than the
learning trial for learned first-order rules that were not members
of a known second-order set [t(19) = 2.5, p < .05]. Moreover,
there was no reliable difference in the learning trial for learned
first-order rules in the Flat set and learned first-order rules in
the Hierarchical set that were not members of a known
second-order set [t(19) = 1.5, p = 0.2]. Thus, consistent with
generalization, the faster learning rate for the Hierarchical set
was specific to those learned first-order rules in the Hierarchical
set for which the second-order rule had been acquired.

Third, once acquired, the generalization of a second-order rule
to unknown first-order rules should be reflected in an abrupt gain
in accuracy. Across subjects, Hierarchical curves consistently
showed step-wise increases, presumably reflecting acquisition
and generalization of a second-order rule (e.g., Figure 2A; see
also Figure S1A available online). By contrast, a gradual increase
was evident for the Flat curves. This qualitative difference in the
shape of the learning curves was reflected in a greater maximum
first derivative (maximum learning rate) and second derivative
(maximum rate of change in the learning rate) for the Hierarchical
than Flat rule sets [Fs > 9.0, ps < .01; Figure 2B].

We further tested the tendency for the Hierarchical learning
curves to be step-wise relative to the Flat learning curves by
explicitly fitting a sigmoid function to each participant’s learning
curves. The sigmoid is defined by two parameters, o and B, that
represent the slope and offset of the sigmoid, respectively.
A larger value of o indicates a steeper step, and a smaller value
of B indicates that the step occurred earlier in learning. Critically,
o was significantly larger (Wilcoxon’s rank sum test: Z = 2.5,
p < 0.05) and B was significantly smaller (Z = —2.9, p < 0.005)
for the Hierarchical than Flat curves. Goodness of fit did not differ
(Z = —0.75, p = .46). To ensure that these differences were not
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Figure 3. Basic Imaging Results
(A) Inflated representation of the left hemisphere
showing areas that demonstrated a positive main
. effect of task (T-values indicated by the color
0.2 i bar), thresholded by a false discovery rate <
0.05. The locations of regions of interest (ROls)
0.0 determined independently from a previous data
set (Badre and D’Esposito, 2007) are overlaid
0.6 pl’ePMd (from posterior to anterior, 1 = dorsal premotor
* cortex [PMd], 2 = pre-premotor cortex [prePMd],
0.4 3 = mid dorsolateral prefrontal cortex [mid-
T DLPFC], and 4 = rostro-polar cortex [RPC]).
0.2 (B) For prePMd but not for PMd, total activity as
0.0 ﬁ measured by the integrated percent signal
changes (iPSCs) for correct trials only differed
. Flat
D Hierarchical

0.6 PMd

0.4 T

across learning for the Hierarchical and Flat sets
(*p < 0.05).

(C) Dividing the learning curve into three temporal
epochs of 120 trials each (Begin, Middle, and End)
reveals that these differences in PMd emerged
after the initial phase of learning for the Hierar-
chical set (“p < 0.05; “p < 0.10).

(D) Dividing the learning curve by estimated
performance (see text) confirms the temporal
differences seen in prePMd. (See also Figure S2.)
All error bars indicate the standard error of the
mean.
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End extended rostral to caudal in frontal

cortex, including dorsal premotor cortex
(PMd; —42 —4 60; 34 —2 56; ~BA 6),
dorsal anterior premotor cortex (prePMd;
—46 4 32; 54 14 30; ~BA 6/44), mid-
dorsolateral prefrontal cortex (mid-
DLPFC; —50 28 36; 48 34 40; ~BA 9/
46), and frontal polar cortex (FPC; —34
56 10; 40 60 14; ~BA 10/46). These ros-
tro-caudal frontal activations corre-
sponded closely to regions previously
associated with progressively abstract

PE-1 PE-2 PE-3 PE-4
Performance Epoch

driven by model assumptions that produced the parametric
learning curve estimates, we also fit sigmoid functions, via
Bernoulli assumptions, directly to each subject’s responses.
Consistent with the above analysis, o was again significantly
larger (Z = 2.7, p < .01) and B was significantly smaller (Z =
—2.7, p < .01) for the Hierarchical than Flat curves.

FMRI Activation during the Learning Task

A whole-brain, voxel-wise contrast of all conditions versus base-
line identified regions that were reliably activated relative to
baseline during the learning task (Figure 3A). This contrast
yielded a characteristic frontoparietal and subcortical network
consistent with both prior studies of rule learning and studies
of hierarchical cognitive control. Bilateral bands of activation
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PE-1 PE-2 PE-3 PE-4

levels of policy selection (Badre and
D’Esposito, 2007). Additional frontal acti-
vations were observed in the supplemen-
tary motor area (SMA; —6 26 42; 2 24 48)
and anterior insula (—32 26 —2; 28 28 —2).

Beyond frontal cortex, task-related activation was evident in
bilateral superior (—27 —52 57; 24 —56 55) and inferior parietal
lobules (IPL; —46 —40 56; 46 —36 50). Subcortically, task-related
activation was observed in bilateral striatum, including the
body of the caudate (—18 —6 21; 19 —6 22) and anterior putamen
(—252 —4;22122).

To test our predictions regarding learning at different levels of
abstraction and their relationship to the rostro-caudal axis of frontal
cortex, we defined regions of interest (ROI) in PMd (—30 —10 68),
prePMd (—38 10 34), mid-DLPFC (—50 26 24), and FPC (—36 50 6)
by using coordinates that were previously in associated with para-
metric increases in first through fourth order control, respectively
(Badre and D’Esposito, 2007). Analysis of the effects of learning
manipulations focused initially on these ROls.
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Hierarchical versus Flat Rule Sets in the Frontal Cortex
We assessed differences in frontal cortex due to the rule set, re-
stricting this and all subsequent analyses to stimulus-related
activity (i.e., prior to feedback) for correct trials only. Both the
Flat and Hierarchical rule sets involve the learning and execution
of simple stimulus-response mappings (first-order policy). How-
ever, only the Hierarchical rule set includes rules at a second
order of policy abstraction. In prior work (Badre and D’Esposito,
2007), we demonstrated that tasks requiring only first-order
policy activated PMd, whereas second-order policy additionally
engaged the more rostral prePMd. Consistent with this previous
study, differences between Flat and Hierarchical rule sets were
evident in prePMd [F(1,19) = 5.0, p < 0.05], but not in the more
caudal PMd region (E = 0.4; Figure 3B). Even more rostral mid-
DLPFC and FPC, at the highest levels of abstraction, did not
show a reliable difference between the Hierarchical and Flat
sets (Fs < 0.9). Hence, despite the fact that subjects engaged
in a task in which no explicit instructions were provided about
a second-order rule, prePMd was the only region to reliably
distinguish between Hierarchical and Flat rule sets.

Time-Dependent Analysis of Learning

in the Frontal Cortex

The overall difference in prePMd activation between Hierarchical
versus Flat conditions is consistent with previous work demon-
strating a hierarchical organization along the rostro-caudal axis
of the frontal cortex (Koechlin et al., 2003; Badre and D’Esposito,
2007), although here the higher-order rules were acquired
through reinforcement rather than explicit instruction. However,
because the present study is primarily concerned with under-
standing the mechanisms of abstract rule learning, determining
at what point in time and in what way this difference in prePMd
emerges during learning is of central importance. In particular,
if the discovery and execution of second-order rules only occurs
after first-order rules are successfully learned, one might predict
that activation in prePMd would remain at baseline until late in
learning and increase only in the Hierarchical condition after
sufficient numbers of first-order rules have been acquired. Alter-
natively, if the search for higher-order rules occurs in parallel with
the search for first-order rules, one would anticipate that activa-
tion in prePMd would be above baseline for both the Hierarchical
and Flat sets from the outset of learning, remaining at that level
throughout the block in the Hierarchical condition but declining
to baseline by the end of learning in the Flat condition.

In order to test these predictions, we divided learning sets
into three phases: “Begin,” “Middle,” and “End.” The crossing
of learning set (Hierachical/Flat) with learning phase (Begin/
Middle/End) was assessed in the PMd and prePMd. During the
Begin phase of learning, both regions were reliably active relative
to baseline [t(19) > 3.9, ps < .001], and no difference was evident
between the learning sets in either region (Fs < 1.9; Figure 3C).
However, by the Middle phase of learning, a reliable difference
emerged between the Flat and Hierarchical sets in prePMd
[E(1,19) = 4.2, p < 0.05] but not in PMd (E = 0.5). The End phase
again showed a reliable difference between Flat and Hierarchical
in prePMd [F(1,19) = 6.4, p < 0.05]. This difference between Flat
and Hierarchical in prePMd was due to a reliable decline in acti-
vation for the Flat [F(1,19) = 4.3, p < 0.05] rule set at the Middle

and End phases of learning, whereas no such decline was
evident for the Hierarchical learning set (E = 0.05). During the
End phase, PMd also revealed a trend difference between
Hierarchical and Flat rule sets [F(1,18) = 3.8, p = .06]. However,
this difference was due to a reliable increase in activation for
the Hierarchical [F(1,18) = 4.9, p < .05] but not Flat (F = .8)
learning set. In summation: (1) At the beginning of learning,
prePMd and PMd were active above baseline for both the
Hierarchical and Flat sets. (2) By the Middle phase of learning,
activation had declined reliably for the Flat but not the Hierar-
chical set in prePMd. (3) At the end of learning, there was a
reliable increase in activity for the Hierarchical but not Flat set
in PMd.

These results are initially consistent with the hypothesis that
the search for rules occurs at multiple levels of abstraction
from the outset of learning. However, although the region by
phase interaction was reliable [F(2,36) = 3.4, p < .05), individual
differences in the learning curves (see Figure S1A) could intro-
duce variability and so reduce our sensitivity to regional differ-
ences. Additionally, due to superior accuracy in the Hierarchical
set, processes related to improved performance, but unrelated
to policy abstraction, could diminish the interpretability of our
effects. For addressing these issues, learning analysis was per-
formed on performance-aligned curves.

Performance-Equated Changes in Learning

in the Frontal Cortex

To evaluate differences in performance between subjects, we
divided the learning curves into performance epochs based on
accuracy, rather than temporal epochs, using three anchor
points: (1) the division between the lowest level of accuracy
(PE-1) and the next highest (PE-2) was defined by the median
across-subject accuracy (0.42) at the learning trial; (2) the divi-
sion between the highest level of accuracy (PE-4) and the next
lowest (PE-3) was defined by the median terminal accuracy
(0.70); and (3) the division between performance levels two and
three (PE-2 and PE-3) was defined as one-third of the difference
in accuracy between the two extreme anchor points (0.51). With
this approach, accuracies were equated for the first three bins
(ts < 1.2, ps > 0.12). Because many fewer subjects reached
the highest level of accuracy in the Flat (5) as compared to the
Hierarchical (15) condition, accuracies were necessarily different
for PE-4 (Figure S1B). Consequently, PE-4 was not included in
the statistical analyses.

Consistent with the results of the time-based analysis, activity
in prefrontal cortex strongly differentiated the Hierarchical
and Flat conditions (Figure 3D). A repeated-measures ANOVA
inclusive of PMd and prePMd demonstrated both ROI x learning
set [F(1,19) = 12.4, p = 0.002] and ROI x performance epoch
[F(2,38) = 12.6, p = 0.0001] interactions. These differences
were confirmed by direct post-hoc comparison of Hierarchical
and Flat activity in prePMd, which was significant for PE-2
and PE-3 (ts > 1.8, ps < 0.05) but not for PE-1 [t(32) = —0.5,
p = 0.33]. By contrast, activation in the more caudal PMd did
not reliably differ between learning sets for any performance
epoch (ts < 1.5). Thus, results from the performance based anal-
ysis corroborated those from the time-based analysis: Hierar-
chical versus Flat differences in prePMd emerged late in learning
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Figure 4. Scatter Plots Demonstrating Brain-Behavior Correlations
The x axis of each plot shows the integrated percent signal change (iPSC) for
correct trials only versus baseline for the beginning phase of learning collapsed
across rule set (Hierarchical/Flat) and accuracy (correct/error) for PMd (left
plots) and prePMd (right plots). This early learning activation across rule sets
is plotted against the difference in learning trial (row 1), terminal accuracy
(row 2), max first derivative (3rd row), and max second derivative (row 4)
between Hierarchical and Flat rule sets.

because of a decline in activation for the Flat relative to the
Hierarchical rule set.

Correlation of Activation in prePMd and Behavior

during Hierarchical Learning

Does the activation early in learning for both Flat and Hierarchical
sets relate to successful higher order rule learning? The previous
two hypotheses make opposite predictions concerning the locus
of such a relationship. If first-order rules must first be learned in
order for second-order rules to be acquired, early activity in
areas supporting first-order rule acquisition (PMd) should be
predictive of subsequent second-order rule learning. Con-
versely, if first-order and second-order rules are explored in
parallel, early activity in areas supporting second-order rule
learning (prePMd), but not first-order rule learning (PMd), should
be predictive of successful second-order rule acquisition. In
order to address this question, we conducted between-subjects
correlations of the mean activation at the Begin phase of
learning, across Hierarchical and Flat sets, with the behavioral
differences between Hierarchical and Flat learning sets (i.e.,
learning trial, terminal accuracy, max first, and max second
derivatives) that mark the successful acquisition of the higher
order rules. As depicted in Figure 4, Begin phase activation in
prePMd correlated reliably with the difference in learning trial
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[R = .51; t(16) = 2.3, p < 0.05], terminal accuracy [R = .56;
1(19) = 2.9, p < .05], and max first derivative [R = .51; t(19) =
2.5, p < 0.05]. A positive trend was also evident for the fourth
marker, the max second derivative [R = .39; {(19) = 1.8, p =
0.09]. However, no such correlations were significant for PMd
(BRs < .3, ps > .21). Thus, these data provide evidence that early
activation in prePMd and not PMd reflects search for higher
order rules.

Time- and Performance-Dependent Analysis

of Learning in Striatum

Consistent with past work on reinforcement learning (Cohen and
Frank, 2009; Cools et al., 2002; Dayan and Balleine, 2002; Frank
and Claus, 2006; Hadj-Bouziane et al., 2003; Murray et al., 2000;
Packard and Knowlton, 2002; Schonberg et al., 2007; Seger,
2008; Sutton and Barto, 1998; Toni et al., 1998; Tremblay
et al., 1998), the whole-brain analysis reliably identified regions
in the striatum—both caudate and anterior putamen—that
were active during learning relative to baseline (Figure 5). Unlike
PMd and prePMd, stimulus-related activity (prior to feedback) in
striatum increased with learning of the Hierarchical but not Flat
set, [F(1,19) = 6.9, p < 0.05) without significant interactions
between conditions (Fs < 1.5, ps > 0.2). Post-hoc comparison
revealed a difference between rule sets by the end of learning
in the left putamen [t(19) = 2.2, p < 0.05] and right caudate
[t(19) = 2.4, p < 0.05], and a trend difference in the left caudate
(t(19) = 1.9, p = 0.07; Figure 5A). Performance-based analysis
was consistent with these effects (see Figure S3).

Effective Connectivity Analysis of the Frontostriatal
Network

Learning of first-order stimulus-response associations has been
consistently shown to depend on dynamic interactions between
striatum and cortex (Hadj-Bouziane et al., 2003; Murray et al.,
2000; Packard and Knowlton, 2002; Seger, 2008; Toni et al.,
1998; Tremblay et al., 1998). Thus, we evaluated effective con-
nectivity between them using Granger causality (GC), a method
for determining whether the BOLD time series in one region helps
to predict the time series in another (Goebel et al., 2003; Kayser
et al., 2009; Roebroeck et al., 2005) (see Supplemental Informa-
tion for additional analysis). PMd and prePMd were Granger
causal for the bilateral caudate (ps < .0005; Figure 5B).
Conversely, activity in bilateral putamen was Granger causal
for both PMd and prePMd (ps < 0.05). Importantly, none of the
above effects differed significantly between rule sets (ps > 0.18).

DISCUSSION

In the present study, we contrasted learning of two rule sets in
which only the Hierarchical set afforded the opportunity to learn
an abstract, second-order rule. Broadly, results from this exper-
iment provide fundamental insights into the way that humans
approach novel learning problems. In summary: (1) Participants
were capable of rapidly acquiring abstract rules when they
were available. (2) Activation was evident in both PMd and
prePMd early in learning but declined in the more rostral prePMd
by the end of learning of the Flat set, which contained no second-
order rules. (3) Activation early in learning in prePMd across
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Hierarchical and Flat sets, but not in PMd, was correlated with
behavioral differences between the Hierarchical and Flat
learning curves. (4) Striatum showed greater activation by the
end of learning for the Hierarchical relative to the Flat set, but
the dynamics of frontostriatal interactions did not differ between
sets—i.e., for both, the putamen influenced, whereas caudate
was influenced by, activation in PMd and prePMd. These results
suggest that from the outset of learning the search for relation-
ships between context and action may occur at multiple levels
of abstraction simultaneously and that this process differentially
relies on systematically more rostral portions of frontal cortex
for the discovery of more abstract relationships. However,
dynamic interactions between striatum and frontal cortex that
support reinforcement learning appear common across levels
of abstraction.

Growing evidence suggests that the frontal cortex may pos-
sess a rostro-caudal organization whereby more rostral regions
support cognitive control involving progressively more abstract
representations (Badre, 2008; Badre and D’Esposito, 2007;
Badre et al., 2009; Botvinick, 2007, 2008; Buckner, 2003; Bunge
and Zelazo, 2006; Christoff and Keramatian, 2007; Koechlin and
Jubault, 2006; Koechlin et al., 2003; Koechlin and Summerfield,
2007; Petrides, 2006; Race et al., 2008). An important question
left open by these previous experiments is the extent to which
this rostro-caudal organization can be leveraged to facilitate
learning of abstract rules. Consistent with past work, our results
demonstrate that a differentiation does indeed emerge rostrally,
in prePMd, when a second-order rule must be learned through
reinforcement rather than explicit instruction. However, critical
to understanding the mechanisms of abstract rule learning is
understanding how this difference arises. In particular, there
are at least two qualitatively distinct ways to account for the
emergence late in learning of a difference in activation between
the Hierarchical and Flat rule sets in prePMd: (1) PrePMd might

Figure 5. Striatum/GC Analyses

(A) Areas within the striatum demonstrating a posi-
tive main effect of task were identified in both
caudate and putamen. Across time, the integrated
percent signal change (iPSC) in both areas tended
to be greater in the Hierarchical than the Flat case
(*p < 0.05; “p < 0.10, where error bars represent
the standard error of the mean).

(B) Despite parallel striatal univariate changes,
Granger causality analysis demonstrated that
BOLD signal in putamen (Pt) was reliably Granger
causal (*p < 0.05; **p < 0.0005) for activity within
PMd and prePMd, which was in turn reliably
Granger causal for activity in the caudate (Cd).
(To PMd and prePMd from left putamen: GC =
0.016 and GC = 0.003, respectively; from right pu-
tamen: GC = 0.026 and GC = 0.007, respectively.
From PMd and prePMd to left caudate: GC =
0.012 and GC = 0.013, respectively; to right
caudate: GC = 0.022 and GC = 0.013, respec-
tively.) Slices show the main effect of task
(T values indicated by the color bar), with Pt and
Cd regions of interest designated by the small
circles at the origins/terminations of the GC
arrows. See also Figures S3 and S4 and Table
S1 for further details.

be recruited to search for and execute a second-order rule
only after first-order rules have been learned. (2) PrePMd might
be directly involved in the search for, as well as the execution
of, second-order policy from the outset of learning and decrease
its involvement to the extent that such rules are not rewarded.
Our data are consistent with the second of these proposals
and inconsistent with the first. Specifically, activation is evident
early in prePMd, before all first- or second-order rules are known
and, in the case of the Flat set, even when no second-order rules
can be known. Moreover, this early activation in prePMd, across
learning conditions (i.e., Flat or Hierarchical), correlates with
discovery of second-order rules when they are available, indi-
cating that this activation reflects neural processes related to
the early search for abstract rules. Thus, the decline in activation
in prePMd during the Flat set, when second-order rules are not
available, may reflect the attenuation of higher-level search
when higher-order rules are not rewarded.

Following from this account, this result provides potential
insight into another fundamental question concerning a putative
rostro-caudal hierarchical organization of the frontal cortex;
namely, to the extent that the brain does possess such an archi-
tecture, what advantages might it convey over other schemes?
In particular, it has been demonstrated that though complex
action may be represented hierarchically (i.e., in terms of goals,
subgoals, etc.), the existence of hierarchical representations
does not require that the action system itself segregate these
representations among spatially separate pools of neurons (Bot-
vinick and Plaut, 2004; Botvinick, 2007). One possible advantage
of having such an organization, then, is that structural hierarchies
can facilitate learning of tasks that require acquisition of abstract
policy relationships (Paine and Tani, 2005). One reason for such
efficiency could be the capability of hierarchical structures to
search independently for rules at multiple levels of abstraction
(i.e., in parallel). The present results are consistent with this
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perspective in that frontal cortex appears to leverage its hierar-
chical organization in order to engage in search at multiple levels
of abstraction from the outset of learning.

Interestingly, these results also provide a potential account of
the classical learning versus execution dissociation between
PFC and PMd during rule learning. In particular, it has been
widely noted that with substantial training, activity in PFC
declines and activity in PMd is sustained (Brasted and Wise,
2004; di Pellegrino and Wise, 1993; Hadj-Bouziane et al., 2003;
Hoshi and Tanji, 2006, 2007; Lucchetti and Bon, 2001; Mitz
et al., 1991; Passingham, 1988, 1989; Petrides, 1985a, b, 1987;
Boettiger and D’Esposito, 2005). Indeed, lesioning PFC after
learning does not impair subsequent execution of the rules
(Bussey et al., 2001; Petrides, 1985b). In the present study,
learning the Flat rule set is analogous to these past studies of
rule learning, given that it involves learning of arbitrary first-order
rules. Indeed, perhaps consistent with these past experiments,
activation declines over the course of learning in prePMd but
not in PMd. However, during learning of the Hierarchical set,
activation does not decline but is sustained in prePMd
throughout learning. Thus, past distinctions between learning
and execution of rules in the frontal cortex may also reflect the
fact that most rules in these studies are first-order policy, by
our definition, and so may not have been abstract enough to
require sustained involvement of the PFC.

Finally, these results have implications for the study of
changes in the frontal cortex and striatum during reinforcement
learning (Brasted and Wise, 2004; Fuijii and Graybiel, 2005; Loh
et al., 2008; Pasupathy and Miller, 2005). At least two alternative
models have been proposed with respect to frontostriatal
dynamics during learning. In the first, frontal cortex serves to
uncover patterns in the environment that are subsequently
consolidated in the basal ganglia (Graybiel, 1998). This hypoth-
esis predicts that cortical activity should precede that of
the striatum. Alternatively, the striatum may uncover stimulus-
reward contingencies that merit more dedicated cortical pro-
cessing (Houk and Wise, 1995). This alternative hypothesis
appears to predict the reverse, namely that basal ganglia activity
should precede that of the frontal cortex. These timing differ-
ences have been suggested not only to occur across the course
of learning, with either cortex or basal ganglia instructing the
other across this longer time scale, but also to potentially reflect
(and possibly to result from) moment-by-moment precedence of
activity (Houk and Wise, 1995).

Previous results in the nonhuman primate have supported
both sides of this controversy. Pasupathy and Miller (2005) found
that recordings from both area 9/46 of the prefrontal cortex and
the head and body of the caudate were consistent with the latter
hypothesis in macaques performing a well-learned serial
reversal task. In their study, caudate activity reliably preceded
that of the PFC throughout learning, but moved relatively earlier
intime as learning proceeded. However, Fuijii and Graybiel (2005)
found that local field potentials in prefrontal cortex peaked earlier
than LFPs in the striatum on single trials as macaques performed
a well-learned serial saccade task (also see Brasted and Wise,
2004). Our effective connectivity results point to a potentially
more complex system in which the frontal cortex both influences
and is influenced by the striatum during rule learning. Moreover,
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we demonstrate that this temporal relationship between BOLD
signal in the putamen, cortex, and caudate is consistent across
the duration of learning. Such a dynamical system is broadly
consistent with a range of proposals in the reinforcement
learning literature that assume functional divisions both within
the striatum and within cortex itself and that acknowledge
dynamic interactions between them such that the striatum can
influence cortical representations—e.g., through updating/
gating—and can likewise be influenced by what the cortex repre-
sents—e.g., for the purposes of learning and action selection
(Alexander et al., 1986; Daw et al., 2005; Frank et al., 2004; Grahn
et al.,, 2008, 2009; Hazy et al., 2007; Houk and Wise, 1995;
O’Reilly and Frank, 2006; O’Reilly et al., 2007; Seger and
Cincotta, 2005, 2006).

In conclusion, our findings suggest that the rostro-caudal
architecture of the frontal cortex may support rapid learning
of action rules at multiple levels of abstraction. When encoun-
tering anovel behavioral context, we may search for relationships
between context and action at multiple levels of abstraction
simultaneously, a capability that underlies our remarkable behav-
ioral adaptability and our capacity to generalize our past learning
to new problems. Hence, how we address novel problems in
reasoning, decision-making, and selecting actions under uncer-
tainty may very well reflect both the adaptability and the con-
straints conferred by the basic functional organization of the
frontal cortex.

EXPERIMENTAL PROCEDURES

Participants

Twenty right-handed, native English speakers (eight female; ages 18-31 years)
with normal or corrected-to-normal vision were enrolled in the study. Data from
an additional six participants was collected but excluded because of excessive
head motion (>3 mm: four subjects) or an inability to learn above chance in either
condition (two subjects). All participants underwent prescreening for neurolog-
ical or psychological disorders, use of medications with potential vascular or
CNS effects, and any contraindications for MRI. Normal color vision was
verified for all subjects as assessed by the Ishihara test for color deficiency.
Participants received a base payment of approximately $56 and an average
bonus of $20.57 for correct responses during the task (see Behavioral Proce-
dures). Informed consent was obtained from subjects in accordance with
procedures approved by the Committees for Protection of Human Subjects at
the University of California, Berkeley and University of California, San Francisco.

Logic and Design

For investigating the discovery of abstract rules, a reinforcement learning
task was designed that required the learning of two rule sets, one of which
contained a higher-order rule structure (Hierarchical rule set) and one that
could only be learned as one-to-one mappings between stimuli and responses
(Flat rule set). Participants were not given an indication through an instruction
or any other cue that a higher-order structure existed in one of the rule sets.
Moreover, trials for both rule sets were identical in terms of all stimulus presen-
tation parameters, instructions, and response-reward contingencies.

Each rule set was learned over the course of 360 individual learning trials
divided equally into six fMRI scan runs. Each trial commenced with the presen-
tation of a stimulus display consisting of a nonsense object (i.e., without a
real-world counterpart) appearing in one of three orientations (up [0°], left
[-90°], or oblique [23°]) and bordered by a colored square. The stimulus
display subtended ~10° of visual angle. Two colors, three object shapes,
and three orientations were used for each rule set, the conjunction of which re-
sulted in 18 unique stimulus displays (i.e., three shapes x three orientations x
two colors). Each of the 18 unique displays occurred 20 times across the six
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fMRI runs for a given rule set. The specific colors and shapes differed across
the two rule sets within subject and were counterbalanced for rule set across
subjects.

The object and square appeared together for 1 s and were then replaced
by a green fixation cross that appeared for up to an additional 2 s. While the
stimulus display or green fixation cross was present, the participant could
respond with one of three buttons using the index, middle, or ring fingers of
his right hand. Once a response was made or 3 s had passed without
a response, the fixation cross became red and no further responding was
allowed. If a participant had not responded by the 3 s deadline, that trial was
scored as incorrect. The red fixation cross following a response or upon
reaching the response deadline was presented for either 0, 1, or 2 s, after
which feedback was provided in the form of an auditory tone. The variable
interval permitted estimation of the BOLD response to feedback independent
from that to the stimulus display.

A pure high tone (750 Hz) indicated a correct response, and a buzzing tone
(combination of 300 and 400 Hz pure tones) indicated an incorrect response.
Participants were given a $0.05 bonus reward for each correct response.
A running total bonus was provided at the end of each run. After feedback,
the red fixation cross remained on the screen for a variable null intertrial interval
(mean 1.5 s). The order of trials and duration of intertrial intervals within a
block was determined by optimizing the efficiency of the design matrix so as
to permit estimation of the event-related response (Dale, 1999). Efficiency
was equated across rule sets, and the order of rule set learning (i.e., whether
Hierarchical or Flat was learned first) was counterbalanced across partici-
pants.

For both rule sets, participants were given the same instruction. No indica-
tion was given that a higher-order relationship existed or that they should
search for an abstract rule. Participants did not practice the task but they
were allowed to fully familiarize themselves with all 18 stimuli they would
encounter for a given rule set prior to conducting the learning trials for that
rule set. Hence, there were no differences in any stimulus presentation param-
eters or instructions between the rule sets. Where the two rule sets differed
was simply in the arrangement of mappings between stimulus displays and
responses (Figure 1). For the Hierarchical set, the mappings between the
18 stimulus displays and 3 responses were ordered such that in the context
of one colored box, shape fully determined the response. In other words,
each of the three shapes corresponded to one of the three buttons regardless
of the orientation of the object. Conversely, in the context of the other color,
orientation fully determined the response. Thus, a second-order rule, linking
color and dimension, determined the relevant set of first-order rules that linked
shape and response or orientation and response. For the Flat set, the arrange-
ment of responses was such that no such higher-order relationship existed.
Thus, each of the 18 first-order rules linking a unique stimulus display with
one of the three responses had to be learned individually. Critical to the logic
of the experiment, the Hierarchical set could be learned as 18 first-order rules,
if participants could not discover the higher-order relationship. By contrast, the
Flat structure did not afford the opportunity to acquire second-order rules and
so had to be learned as a set of one-to-one mappings between stimulus and
response.

In counterbalancing the specific mappings between stimulus displays and
responses across subjects, two additional constraints were applied beyond
those listed above. First, all responses were represented equally across the
entire set. Second, given that three of the specific object-orientation combina-
tions in the Hierarchical learning set had the same response regardless of
colored box (i.e., those cases in which the orientation and shape cued
congruent responses), we ensured that three object-orientation combinations
also shared a response across colored boxes in the Flat set, equating this
feature of the rule sets.

Behavioral Analysis

Learning curves were calculated with a state-space modeling procedure
(Smith et al., 2004) that estimates the probability of a correct response on
each trial as a function of a latent Gaussian state process (i.e., the state of
knowledge the subject) and an observable Bernoulli response process (i.e.,
the responses of the subject). In other words, the model uses the learner’s
trial-by-trial responses (either correct or incorrect) to estimate his knowledge

about the task over time. In contrast with “sliding average” or other methods
of computing learning curves, this approach allows one to define a confidence
interval associated with the estimate of learning on each trial. Thus, this
method produces a “learning trial,” or the trial at which the confidence interval
no longer encompasses chance performance. We note that because this
method estimates a single value for the variance of the Gaussian state process
across learning, it does not incorporate details of the task or make assump-
tions about hierarchical learning. Learning curves with this procedure were
calculated both for the entire rule set and also for each of the 18 rules individ-
ually based on the 20 encounters with a particular stimulus display. In addition
to the behavioral analyses described below, these curves were used for the
fMRI analysis (see below).

On the basis of learning estimates calculated with this approach, we
focused our behavioral analysis on four components of the curve: (1) the
learning trial, as described in the preceding paragraph; (2) the terminal
accuracy (i.e., the probability of a correct response on the final trial), which
is related to the degree of learning at the conclusion of the session; (3) the
maximal first derivative of the learning curve, which serves as an index of
the maximal speed of learning over the session; and (4) the maximal second
derivative of the curve, which defines the maximal rate of change in the
learning rate over the session.

We further conducted a model-based analysis in order to explicitly assess
the shape of the learning curves for the Hierarchical and Flat learning sets.
In particular, we fit a sigmoid function defined as follows:

1

f:m (Equation 1)

both to the learning curves, and directly to the subject’s binary responses
based on Bernoulli assumptions. In this function, « reflects the slope of the
sigmoid and B defines the temporal offset relative to the start of the learning
session. A step-wise function will have a steep slope (large o), and faster
learning will have a shorter offset (smaller p). Parameters (a and f) were
estimated with a nonlinear least-squares data fit (the Matlab function
“nlinfit.m”; http://www.mathworks.com). Goodness of fit was assessed using
a 2 criterion:

= Z(yi _A.Vf)

(Equation 2)
7 Yi

where y; represents the probability of a correct response at time i, as deter-
mined by the learning curve, and y; represents the sigmoid-derived estimate
of this value. We did not include an additional parameter to allow for variation
in asymptotic performance. Because the rules are deterministic and occupy
a finite space, there is not an a priori reason to believe that learning in the
Flat case should asymptote below perfect performance, rather than simply
taking longer because of the larger number of individual stimulus-response
relationships that must be learned.

MRI Procedures

Whole-brain imaging was performed on a Siemens 3T TIM Trio MRI system
with a standard 12-channel head coil. Functional data were acquired with
a gradient-echo echo-planar pulse sequence (TR = 2 s, TE = 28 ms, flip
angle = 90°; 29 axial slices, matrix = 128 x 128, FOV = 230 x 230 mm, slice
thickness = 3 mm, 203 volume acquisitions per run). High-resolution
T1-weighted (MP-RAGE) anatomical images were collected for anatomical
visualization. Head motion was restricted with firm padding that surrounded
the head. Visual stimuli projected onto the screen were viewed through a mirror
attached to the head coil. Auditory feedback was presented through Siemens
headphones provided as a stock component with the Trio scanner. All exper-
imental scripts were programmed and run on a Macintosh computer with the
Psychophysics Toolbox in MATLAB (http://psychtoolbox.org/).

fMRI Analysis

Functional imaging data were processed with SPM2 (Wellcome Dept. of
Cognitive Neurology, London). After quality assurance procedures for assess-
ment of outliers or artifacts in volume and slice-to-slice variance in the global
signal, functional images were corrected for differences in slice acquisition
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timing by resampling all slices in time to match the first slice, followed by
motion correction with sinc interpolation across all runs. The mean functional
image was then coregistered with the high-resolution MP-RAGE anatomical
image. After normalizing the MP-RAGE to MNI stereotaxic space, we applied
the same normalization parameters (determined by a 12-parameter affine
transformation along with a nonlinear transformation using cosine basis
functions) to each of the realigned functional images. Images were resampled
into 2 X 2 X 2 mm voxels and then spatially smoothed with an 8 mm FWHM
isotropic Gaussian kernel.

Statistical models were constructed under the assumptions of the general
linear model. For time-based analyses, we evaluated each of the 12 ~6 min
runs that comprised the experiment with a separate set of four regressors.
(Out of the 20 subjects x 12 runs/subject = 240 total runs, seven individual
runs were excluded because of movement artifact.) These four regressors
consisted of the onset times for correct and incorrect responses, divided by
whether they represented the appearance of the stimulus or the succeeding
feedback tone. Subsequent contrasts treated the first, middle, and final two
runs for the Hierarchical and Flat conditions as “Begin,” “Middle,” and
“End,” respectively. These contrasts, and all subsequent analyses, were
limited to correct trials only. For performance-based analyses, each of the
12 runs could be defined by up to eight regressors, once again representing
the onset times for correct and incorrect responses but divided by whether
performance was in the first, second, third, or fourth performance level. As
described in Results, the first performance level ranged from an accuracy of
0.0 to the median probability across subjects of a correct response at the
learning trial (0.42). The fourth performance level ranged from the median
terminal accuracy (0.70) to perfect accuracy. The difference between the
median probability of a correct response at the learning trial, and that at the
terminal accuracy, was divided again such that performance level two ranged
from the medial learning trial accuracy to one-third of this difference (0.51), and
performance level three covered the range occupied by the other two-thirds of
this difference. As noted in Results, because fewer subjects reached the
highest level of accuracy in the Flat (5) as compared to the Hierarchical (15)
condition, accuracies could not be well-matched for PE-4 (Figure S1B), and
our analyses instead focused on the other performance epochs.

Statistical effects were estimated with a subject-specific fixed-effects
model, with session-specific effects and low-frequency signal components
(<0.01 Hz) treated as confounds. Linear contrasts were used for obtaining
subject-specific estimates for each effect. These estimates were entered
into a second-level analysis treating subjects as a random effect, with a
one-sample t test against a contrast value of zero at each voxel. Voxel-based
group effects were considered reliable to the extent that they consisted of vox-
els that exceeded an FDR-corrected threshold of p < 0.05. We note that the
use of FDR here makes an assumption of independence among voxels that
is probably violated (Chumbley and Friston, 2009), and consequently, although
controlling the false discovery rate for voxels, this correction may not do so for
regions. For the purpose of additional anatomical precision, group contrasts
were also rendered on an MNI canonical brain that underwent cortical “infla-
tion” using FreeSurfer (CorTechs Labs) (Dale et al., 1999; Fischl et al., 1999).

Whole-brain voxel-wise event-related analysis was supplemented by region
of interest (ROI) analysis that estimated the shape of the change in BOLD
response from the onset of each trial event. ROIs were defined in two ways
that were independent and unbiased with respect to the tests of interest: (1)
the ROls for PMd, prePMd, IFS, and FPC were taken from Badre and D’Espo-
sito (2007) on the basis of their association with first, second, third, and fourth
order rule execution, respectively; (2) all other ROIs were defined as all signif-
icant voxels within 8 mm of a maximum chosen from the contrast of all condi-
tions versus fixation baseline in the current experiment. Selective averaging
with respect to peristimulus time was conducted with the Marsbars toolbox
(Brett et al., 2002, 8th International Conference on Functional Mapping of
the Human Brain, abstract), permitting assessment of the signal change asso-
ciated with each condition. Integrated percent signal change was computed
on the basis of the integral of the peak time point—defined neutrally at 4 s
on the basis of the average across conditions for time points up to 14 s after
trial onset—+2 time points, relative to an implicit baseline of zero. All ROI
data were subjected to repeated-measures analyses of variance (ANOVA).
Paired t tests were applied for all time-based post hoc analyses. For perfor-
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mance-based analyses, we employed a more conservative post hoc measure
(a weighted, unpaired t test) to account directly for variability in the number of
trials within each performance level for each subject (Figure S1).

In order to evaluate the influence of each of these ROIs on the others, we
used bivariate Granger causality. This technique determines whether the
time series in one voxel or region helps to predict upcoming time points in a
second time series; if so, that voxel or region is said to be Granger causal
(GC) for the second. The complexity of the underlying model that permits these
computations can vary. In this case, as in our previous work, we restricted our
analysis to linear models (see Kayser et al. [2009] for full details).

To generate the relevant time series, we used each subject’s normalization
parameters to project all of our ROls into the native space. We then applied
these ROls to the relevant subject’s realigned functional images in order to
define the time course for each significant voxel, within each ROI, for each
of that subject’s runs. After computing the run-by-run GC values for each
subject, we computed the median of each subject’s ROI-by-ROI GC value
across each condition (Hierarchical versus Flat), as there were no significant
differences between GC values for the first two, last two, and all six runs
(data not shown). We performed Wilcoxon’s signed rank tests for each
ROI-ROI pair to determine significance across subjects (see Supplement for
a further description of GC analyses).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, four figures, and
one table and can be found with this article online at doi:10.1016/j.neuron.
2010.03.025.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (MH63901,
NS40813, and NS065046). We thank K. Sakanaka and D. Erickson for assis-
tance with data collection. We also thank M. Brett and M. J. Frank for helpful
discussions during preparation of this manuscript.

Accepted: February 23, 2010
Published: April 28, 2010

REFERENCES

Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of
functionally segregated circuits linking basal ganglia and cortex. Annu. Rev.
Neurosci. 9, 357-381.

Asaad, W.F., Rainer, G., and Miller, E.K. (1998). Neural activity in the primate
prefrontal cortex during associative learning. Neuron 27, 1399-1407.

Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organiza-
tion of the frontal lobes. Trends Cogn. Sci. 72, 193-200.

Badre, D., and D’Esposito, M. (2007). Functional magnetic resonance imaging
evidence for a hierarchical organization of the prefrontal cortex. J. Cogn.
Neurosci. 19, 2082-2099.

Badre, D., and Wagner, A.D. (2004). Selection, integration, and conflict
monitoring; assessing the nature and generality of prefrontal cognitive control
mechanisms. Neuron 41, 473-487.

Badre, D., and Wagner, A.D. (2006). Computational and neurobiological
mechanisms underlying cognitive flexibility. Proc. Natl. Acad. Sci. USA 103,
7186-7191.

Badre, D., Hoffman, J., Cooney, J.W., and D’Esposito, M. (2009). Hierarchical
cognitive control deficits following damage to the human frontal lobe. Nat.
Neurosci. 12, 515-522.

Boettiger, C.A., and D’Esposito, M. (2005). Frontal networks for learning
and executing arbitrary stimulus-response associations. J. Neurosci. 25,
2723-2732.

Botvinick, M.M. (2007). Multilevel structure in behaviour and in the brain:
A model of Fuster’s hierarchy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362,
1615-1626.


http://dx.doi.org/doi:10.1016/j.neuron.2010.03.025
http://dx.doi.org/doi:10.1016/j.neuron.2010.03.025

Neuron

Frontal Cortex and Abstract Rule Learning

Botvinick, M.M. (2008). Hierarchical models of behavior and prefrontal
function. Trends Cogn. Sci. 12, 201-208.

Botvinick, M., and Plaut, D.C. (2004). Doing without schema hierarchies:
a recurrent connectionist approach to normal and impaired routine sequential
action. Psychol. Rev. 1711, 395-429.

Botvinick, M.M., Cohen, J.D., and Carter, C.S. (2004). Conflict monitoring and
anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539-546.

Brasted, P.J., and Wise, S.P. (2004). Comparison of learning-related neuronal
activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19,
721-740.

Braver, T.S., Reynolds, J.R., and Donaldson, D.l. (2003). Neural mechanisms
of transient and sustained cognitive control during task switching. Neuron
39, 713-726.

Buckner, R.L. (2003). Functional-anatomic correlates of control processes in
memory. J. Neurosci. 23, 3999-4004.

Bunge, S.A. (2004). How we use rules to select actions: A review of evidence
from cognitive neuroscience. Cogn. Affect. Behav. Neurosci. 4, 564-579.

Bunge, S.A., and Zelazo, P.D. (2006). A brain-based account of the develop-
ment of rule use in childhood. Current Directions in Psychological Science
15, 118-121.

Bussey, T.J., Wise, S.P., and Murray, E.A. (2001). The role of ventral and orbital
prefrontal cortex in conditional visuomotor learning and strategy use in rhesus
monkeys (Macaca mulatta). Behav. Neurosci. 115, 971-982.

Chase, W.G., and Simon, H.A. (1973). The mind’s eye in chess. In Visual
Information Processing, W.G. Chase, ed. (New York: Academic Press),
pp. 215-281.

Christoff, K., and Keramatian, K. (2007). Abstraction of mental representations:
Theoretical considerations and neuroscientific evidence. In Perspectives on
Rule-Guided Behavior, S.A. Bunge and J.D. Wallis, eds. (New York: Oxford
University Press).

Chumbley, J.R., and Friston, K.J. (2009). False discovery rate revisited: FDR
and topological inference using Gaussian random fields. Neuroimage 44,
62-70.

Cohen, M.X., and Frank, M.J. (2009). Neurocomputational models of basal
ganglia function in learning, memory and choice. Behav. Brain Res. 799,
141-156.

Cohen, J.D., Dunbar, K., and McClelland, J.L. (1990). On the control of auto-
matic processes: A parallel distributed processing account of the Stroop
effect. Psychol. Rev. 97, 332-361.

Cools, R., Clark, L., Owen, A.M., and Robbins, T.W. (2002). Defining the neural
mechanisms of probabilistic reversal learning using event-related functional
magnetic resonance imaging. J. Neurosci. 22, 4563-4567.

D’Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K.,, Atlas, S., and Grossman,
M. (1995). The neural basis of the central executive system of working memory.
Nature 378, 279-281.

Dale, A.M. (1999). Optimal experimental design for event-related fMRI. Hum.
Brain Mapp. 8, 109-114.

Dale, A.M., Fischl, B., and Sereno, M.1. (1999). Cortical surface-based analysis.
|. Segmentation and surface reconstruction. Neuroimage 9, 179-194.

Daw, N.D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition
between prefrontal and dorsolateral striatal systems for behavioral control.
Nat. Neurosci. 8, 1704-1711.

Dayan, P., and Balleine, B.W. (2002). Reward, motivation, and reinforcement
learning. Neuron 36, 285-298.

diPellegrino, G., and Wise, S.P. (1993). Visuospatial versus visuomotor activity
in the premotor and prefrontal cortex of a primate. J. Neurosci. 13, 1227-1243.

Duncan, J. (2001). An adaptive coding model of neural function in prefrontal
cortex. Nat. Rev. Neurosci. 2, 820-829.

Estes, W.K. (1972). An associative basis for coding and organization in
memory. In Coding Processes in Human Memory, A.W. Melton and E. Martin,
eds. (Washington, D.C.: V. H. Winston & Sons), pp. 161-190.

Fischl, B., Sereno, M., and Dale, A.M. (1999). Cortical surface-based analysis.
II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9,
195-207.

Frank, M.J., and Claus, E.D. (2006). Anatomy of a decision: Striato-orbitofron-
tal interactions in reinforcement learning, decision making, and reversal.
Psychol. Rev. 113, 300-326.

Frank, M.J., Seeberger, L.C., and O’Reilly, R. (2004). By carrot or by stick:
Cognitive reinforcement learning in parkinsonism. Science 306, 1940-1943.

Fuijii, N., and Graybiel, A.M. (2005). Time-varying covariance of neural activities
recorded in striatum and frontal cortex as monkeys perform sequential-
saccade tasks. Proc. Natl. Acad. Sci. USA 102, 9032-9037.

Gick, M.L., and Holyoak, K.J. (1983). Schema induction and analogical trans-
fer. Cognitive Psychology 75, 1-38.

Goebel, R., Roebroeck, A., Kim, D.S., and Formisano, E. (2003). Investigating
directed cortical interactions in time-resolved fMRI data using vector autore-
gressive modeling and Granger causality mapping. Magn. Reson. Imaging
21,1251-1261.

Grahn, J.A., Parkinson, J.A., and Owen, A.M. (2008). The cognitive functions of
the caudate nucleus. Prog. Neurobiol. 86, 141-155.

Grahn, J.A., Parkinson, J.A., and Owen, A.M. (2009). The role of the basal
ganglia in learning and memory: Neuropsychological studies. Behav. Brain
Res. 199, 53-60.

Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires.
Neurobiol. Learn. Mem. 70, 119-136.

Greeno, J.G., and Simon, H.A. (1974). Processes for sequence production.
Psychological Review 87, 187-197.

Hadj-Bouziane, F., Meunier, M., and Boussaoud, D. (2003). Conditional
visuo-motor learning in primates: a key role for the basal ganglia. J. Physiol.
(Paris) 97, 567-579.

Hazy, T.E., Frank, M.J., and O’reilly, R.C. (2007). Towards an executive without
a homunculus: computational models of the prefrontal cortex/basal ganglia
system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 1601-1613.

Hoshi, E., and Taniji, J. (2006). Differential involvement of neurons in the dorsal
and ventral premotor cortex during processing of visual signals for action
planning. J. Neurophysiol. 95, 3596-3616.

Hoshi, E., and Taniji, J. (2007). Distinctions between dorsal and ventral premo-
tor areas: Anatomical connectivity and functional properties. Curr. Opin.
Neurobiol. 17, 234-242.

Houk, J.C., and Wise, S.P. (1995). Distributed modular architectures linking
basal ganglia, cerebellum, and cerebral cortex: their role in planning and
controlling action. Cereb. Cortex 5, 95-110.

Kayser, A.S., Sun, F.T., and D’Esposito, M. (2009). A comparison of Granger
causality and coherency in fMRI-based analysis of the motor system. Hum.
Brain Mapp. 30, 3475-3494.

Koechlin, E., and Jubault, T. (2006). Broca’s area and the hierarchical organi-
zation of human behavior. Neuron 50, 963-974.

Koechlin, E., and Summerfield, C. (2007). An information theoretical approach
to prefrontal executive function. Trends Cogn. Sci. 171, 229-235.

Koechlin, E., Ody, C., and Kouneiher, F. (2003). The architecture of cognitive
control in the human prefrontal cortex. Science 302, 1181-1185.

Lashley, K.S. (1951). The problem of serial order in behavior. In Cerebral
Mechanisms in Behavior, L.A. Jeffress, ed. (New York: Wiley), pp. 112-136.
Loh, M., Pasupathy, A., Miller, E.K., and Deco, G. (2008). Neurodynamics of
the prefrontal cortex during conditional visuomotor associations. J. Cogn.
Neurosci. 20, 421-431.

Lucchetti, C., and Bon, L. (2001). Time-modulated neuronal activity in the
premotor cortex of macaque monkeys. Exp. Brain Res. 7147, 254-260.

Miller, E.K., and Cohen, J.D. (2001). An integrative theory of prefrontal cortex
function. Annu. Rev. Neurosci. 24, 167-202.

Miller, G.A., Galanter, E., and Pribram, K.H. (1960). Plans and the Structure of
Behavior (New York: Holt, Rinehart and Winston, Inc.).

Neuron 66, 315-326, April 29, 2010 ©2010 Elsevier Inc. 325



Mitz, A.R., Godschalk, M., and Wise, S.P. (1991). Learning-dependent
neuronal activity in the premotor cortex: activity during the acquisition of
conditional motor associations. J. Neurosci. 11, 1855-1872.

Murray, E.A., Bussey, T.J., and Wise, S.P. (2000). Role of prefrontal cortex in
a network for arbitrary visuomotor mapping. Exp. Brain Res. 133, 114-129.
Newell, A. (1990). Unified Theories of Cognition (Cambridge, MA: Harvard
University Press).

O’Reilly, R.C., and Frank, M.J. (2006). Making working memory work:
A computational model of learning in the prefrontal cortex and basal ganglia.
Neural Comput. 18, 283-328.

O’Reilly, R.C., Frank, M.J., Hazy, T.E., and Watz, B. (2007). PVLV: The primary
value and learned value Pavlovian learning algorithm. Behav. Neurosci. 1217,
31-49.

Packard, M.G., and Knowlton, B.J. (2002). Learning and memory functions of
the Basal Ganglia. Annu. Rev. Neurosci. 25, 563-593.

Paine, R.W., and Tani, J. (2005). How hierarchical control self-organizes in
artificial adaptive systems. Adaptive Behavior 13, 211-225.

Passingham, R.E. (1988). Premotor cortex and preparation for movement.
Exp. Brain Res. 70, 590-596.

Passingham, R.E. (1989). Premotor cortex and the retrieval of movement.
Brain Behav. Evol. 33, 189-192.

Passingham, R.E. (1993). The Frontal Lobes and Voluntary Action (Oxford, UK:
Oxford University Press).

Pasupathy, A., and Miller, E.K. (2005). Different time courses of learning-
related activity in the prefrontal cortex and striatum. Nature 433, 873-876.
Petrides, M. (1985a). Deficits in non-spatial conditional associative learning
after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95-101.
Petrides, M. (1985b). Deficits on conditional associative-learning tasks after
frontal- and temporal-lobe lesions in man. Neuropsychologia 23, 601-614.
Petrides, M. (1987). Conditional learning and the primate frontal cortex. In
The Frontal Lobes Revisited, E. Perecman, ed. (New York: IRBN Press),
pp. 91-108.

Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional
organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 781-795.
Petrides, M. (2006). The rostro-caudal axis of cognitive control processing
within lateral frontal cortex. In From Monkey Brain to Human Brain: A Fyssen

326 Neuron 66, 315-326, April 29, 2010 ©2010 Elsevier Inc.

Neuron

Frontal Cortex and Abstract Rule Learning

Foundation Symposium, S. Dehaene, J.-R. Duhamel, M.D. Hauser, and
G. Rizzolatti, eds. (Cambridge, MA: MIT Press), pp. 293-314.

Race, E.A., Shanker, S., and Wagner, A.D. (2008). Neural priming in human
frontal cortex: Multiple forms of learning reduce demands on the prefrontal
executive system. J Cogn Neurosci. 21, 1766-1781.

Roebroeck, A., Formisano, E., and Goebel, R. (2005). Mapping directed
influence over the brain using Granger causality and fMRI. Neuroimage 25,
230-242.

Schoénberg, T., Daw, N.D., Joel, D., and O’Doherty, J.P. (2007). Reinforcement
learning signals in the human striatum distinguish learners from nonlearners
during reward-based decision making. J. Neurosci. 27, 12860-12867.

Seger, C.A. (2008). How do the basal ganglia contribute to categorization?
Their roles in generalization, response selection, and learning via feedback.
Neurosci. Biobehav. Rev. 32, 265-278.

Seger, C.A., and Cincotta, C.M. (2005). The roles of the caudate nucleus in
human classification learning. J. Neurosci. 25, 2941-2951.

Seger, C.A., and Cincotta, C.M. (2006). Dynamics of frontal, striatal, and
hippocampal systems during rule learning. Cereb. Cortex 16, 1546-1555.
Smith, A.C., Frank, L.M., Wirth, S., Yanike, M., Hu, D., Kubota, Y., Graybiel,
A.M., Suzuki, W.A., and Brown, E.N. (2004). Dynamic analysis of learning in
behavioral experiments. J. Neurosci. 24, 447-461.

Stuss, D.T., and Benson, D.F. (1987). The frontal lobes and control of cognition
and memory. In The Frontal Lobes Revisited, E. Perecman, ed. (New York: The
IRBN Press), pp. 141-158.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement Learning: An Introduction
(Cambridge, MA: MIT Press).

Toni, I, Krams, M., Turner, R., and Passingham, R.E. (1998). The time course of
changes during motor sequence learning: a whole-brain fMRI study. Neuro-
image 8, 50-61.

Tremblay, L., Hollerman, J.R., and Schultz, W. (1998). Modifications of
reward expectation-related neuronal activity during learning in primate stria-
tum. J. Neurophysiol. 80, 964-977.

Wallis, J.D., Anderson, K.C., and Miller, E.K. (2001). Single neurons in
prefrontal cortex encode abstract rules. Nature 477, 953-956.

White, I.M., and Wise, S.P. (1999). Rule-dependent neuronal activity in the
prefrontal cortex. Exp. Brain Res. 126, 315-335.



Neuron, Volume 66

Supplemental Information
Frontal Cortex and the Discovery

of Abstract Action Rules
David Badre, Andrew S. Kayser, and Mark D’Esposito



Supplemental Results
Hippocampal activation during learning

Although our focus was primarily on frontal cortex and striatum, we also
analyzed changes in BOLD activity in the hippocampus during learning. Bilateral
hippocampal ROIs (XYZ = -24 -10 -22, 28 -8 -22) deactivated reliably relative to
baseline (Figure S2), and demonstrated a strong effect of learning set (F(1,19) =17.3,p =
0.0005). A significant interaction between ROI and set (E(1,19) = 6.0, p <0.05) was
reflected in significantly less negative BOLD signal in R hippocampus during the Middle
and End epochs (ts > 2.3, ps < 0.05). Performance-based analysis revealed no effect of
learning set (E(1,19) = 1.7, p =0.2), and only a trend interaction between ROI and

learning set (E(1,19) =3.7,p =0.07).

Performance-based analysis of learning in striatum

To address the possibility that differences in striatal activation emerging late in
learning between the Hierarchical and Flat sets were related to greater accuracy during
the Hierarchical condition, we segregated the activity within caudate and putamen by
performance as described in the Results. Across left striatum, repeated measures
ANOVA revealed a trend effect of rule set (F(1,19) =3.4, p = 0.08; Figure S3). When
bilateral striatal ROIs were included, this effect of rule set became significant (F(1,19) =

50,p <0.05).

Effective connectivity analysis of the fronto-striatal network.

To gain insight into the nature of the interactions between the striatum and PFC
during learning, we evaluated the connectivity between them using Granger causality
(GC). GC is a signal processing technique in which multivariate autoregressive (MVAR)
models of a time series are used to predict upcoming time points. If the MVAR model of

a time series of interest more reliably predicts upcoming time points when a second time



series is incorporated, the second time series is said to be Granger causal for the first.
Because GC takes as input the entire time series, it is possible that our GC values reflect
different aspects of the response (e.g. feedback), rather than activity related to stimulus
processing. If these GC results are related to stimulus processing — i.e. if one time series
is truly to be predictive for another — a necessary but not sufficient condition is that the
first time series must not follow the one it influences during the epoch of interest.
Specifically, any Granger causal influence for which the underlying time series lagged
the activity it was predicting, as assessed here via time to peak BOLD response, would be
strongly suspect.

To assess these timing differences, we computed the impulse response function
for each of four conditions: Hierarchical, stimulus-onset (HSO); Flat, stimulus-onset
(FSO); and, for comparison, Hierarchical, feedback-onset (HFO); and Flat, feedback-
onset (FFO). We then found the best-fitting difference-of-gamma functions for these
points (by using Matlab’s nlinfit function to find optimal parameters for the spm_hrf
function implemented in SPM2) for both the average response across all subjects (Figure
S4, column 1) and the individual responses for each subject — in the latter case, in order
to generate a distribution for the timing of the peak response (Figure S4, column 2). As
evident in Figure S4, the timing of BOLD activity accords with the GC findings
described in the main text of the report. The time courses for activity within these four
ROIs collectively peak at different times (HSO: X(5,90) = 19.7,p = 0.001; FSO: X(5,73)
=28.7,p=3x 107; HFO: X(5,98) = 12.2,p = 0.03; FFO: X(5.85) = 12.2,p = 0.03, all by
non-parametric one-way ANOVA). Moreover, the two frontal ROIs reliably lead the
bilateral caudate for HSO and FSO, while PMd reliably lags the bilateral putamen for
HFO and FFO (Table S1). For none of these comparisons is there a significant timing
difference in a direction contradicting the GC result. Additionally, these (univariate)
analyses are most consistent with GC between frontal cortex and body of the caudate

driven by the stimulus epoch, whereas GC between putamen and frontal cortex may be



more prominent during feedback for PMd (and not strongly differentiated by either epoch

for prePMd).



Figure S1:

Plots illustrating the variance in learning behavior. (a) The individual learning curves for
all subjects in both learning sets provide a sense for the variability in learning. Colors
correspond to individual subjects to permit comparison between the Hierarchical (left)
and Flat (right) plots. The same color is used for a given subject on both plots and
assignment of color to a participant was based on Hierarchical terminal accuracy from
lowest (cool) to highest (hot). (b) Accuracy estimates (top row) are plotted across the
three temporal epochs (left column) and four performance epochs (right column) for the
Flat (dark gray) and Hierarchical (light gray) conditions. Error bars represent the 95%
confidence interval for the mean. It should be noted that because of overall differences in
performance across learning sets, accuracies for PE-4 could not be matched.
Consequently, statistical analyses focused on PE-1 through PE-3. The number of correct
trials contributing to the data for each epoch is also depicted using a box-whisker plot
(bottom row). Each box has lines representing the lower quartile, median, and upper
quartile values; the whiskers define the extent of the data, with outliers marked by
crosses. The number of subjects contributing to each bin is provided at the top of each

box-whisker plot. (* p <.05)

Figure S2:

Results from ROI analysis of the hippocampus. Graphs plot integrated percent signal
change (iPSC) from two hippocampal ROIs (XYZ =-24 -10 -22, 28 -8 -22) for correct
trials only during the Hierarchical and Flat learning sets, segregated by (a) time and (b)
performance. Error bars represent the standard error of the mean.

Figure S3:

Plots from performance-based analysis of the left striatum. Graphs plot integrated percent

signal change (iPSC) within left caudate and left putamen for correct trials only during



Hierarchical and Flat learning sets, segregated by performance. Error bars represent the
standard error of the mean.

Figure S4:

Time course analyses for each of four data types: (a) hierarchical stimulus-onset, (b) flat
stimulus-onset, (¢) hierarchical feedback-onset, and (d) flat feedback-onset, abbreviated
in the text as HSO, FSO, HFO, and FFO, respectively. Data in the first column represent
the impulse response functions color-coded for each of the six ROIs (bilateral putamen,
PMd, prePMd, and bilateral caudate — see legend at upper right). The points within these
graphs in the first column represent average values at each time point across all 20

subjects = the standard error of the mean; the curves indicate the best-fitting difference-

of-gamma functions. Data in the second column represent the distribution of the time-to-
peak across subjects. For each box plot, the lines represent the lower quartile, median,
and upper quartile of the values; the whiskers extending from the end of each box
represent the extent of the rest of the data, with two exceptions: for the FSO case,
additional outlier points are present for the right putamen (in blue) at 7.9 seconds, and for

the prePMd (in magenta) at 6.9 and 7.7 seconds.



Table S1:

Timing differences, in seconds, between peak responses in frontal and striatal ROIs.
Negative values indicate that BOLD activity in the striatal region (either putamen or
caudate) peaks before activity in the cortical region (either PMd or prePMd), while

positive values indicate the opposite. Significance was quantified using Wilcoxon’s rank

sum test (*: p <0.05; **: p <0.005; ~: p<0.10).
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Table S1

HFO FSO HSO

FFO

PMd
prePMd

PMd
prePMd

PMd
prePMd

PMd
prePMd

L putamen

-0.05
-0.70

-0.15
-0.20

-0.70 ~
-0.20

-0.50 *
-0.25

R putamen

-0.25
-0.90 ~

0.25
0.20

-1.50 **
-1.00

-0.65 **
-0.40

L caudate

1.35 **
0.70

1.60 **
1.55*

0.20
0.70 ~

-0.05
0.20

R caudate

1.55 **
0.90~

1.25*
1.20*

-0.30
0.20

-0.25
0.00
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