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Abstract: The ability of functional MRI to acquire data from multiple brain areas has spurred develop-
ments not only in voxel-by-voxel analyses, but also in multivariate techniques critical to quantifying
the interactions between brain areas. As the number of multivariate techniques multiplies, however,
few studies in any modality have directly compared different connectivity measures, and fewer still
have done so in the context of well-characterized neural systems. To focus specifically on the temporal
dimension of interactions between brain regions, we compared Granger causality and coherency (Sun
et al., [2004, 2005]:Neuroimage 21:647-658, Neuroimage 28:227-237) in a well-studied motor system (1)
to gain further insight into the convergent and divergent results expected from each technique, and (2)
to investigate the leading and lagging influences between motor areas as subjects performed a motor
task in which they produced different learned series of eight button presses. We found that these anal-
yses gave convergent but not identical results: both techniques, for example, suggested an anterior-to-
posterior temporal gradient of activity from supplemental motor area through premotor and motor
cortices to the posterior parietal cortex, but the techniques were differentially sensitive to the coupling
strength between areas. We also found practical reasons that might argue for the use of one technique
over another in different experimental situations. Ultimately, the ideal approach to fMRI data analysis
is likely to involve a complementary combination of methods, possibly including both Granger causal-
ity and coherency. Hum Brain Mapp 30:3475-3494, 2009.  © 2009 Wiley-Liss, Inc.
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INTRODUCTION

Understanding the temporal interactions between brain
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areas has clear importance for the understanding of infor-
mation processing in the brain. Knowing whether activity in
the supplemental motor area precedes that in the primary
motor cortex during a motor task, for instance, has clear
implications for theories about the functional organization
of motor systems. To study such questions requires not only
the use of data acquisition techniques with sufficient tempo-
ral resolution to identify time changes on scales appropriate
to neural processing, and sufficient spatial resolution to dis-
tinguish brain areas of interest, but also the use of analysis
techniques sensitive to these temporal and spatial differen-
ces. In humans, such studies have typically been performed
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using electroencephalography, magnetoencephalography,
and related techniques, in which human whole brain
recordings can be made with excellent temporal resolution
at the expense of lesser spatial resolution. Functional MRI,
on the other hand, provides a method for obtaining excel-
lent spatial resolution at the expense of temporal resolution,
due primarily to the low-pass filtering effect of the hemody-
namic response function (HRF). In the realm of temporal
analysis, EEG and MEG are frequently able to take advant-
age of signal processing techniques dependent on excellent
temporal resolution to an extent that may not be possible
with fMRI It nonetheless remains possible, however, to
obtain differences in timing effects from the time series gen-
erated by fMRI data, as demonstrated by many authors
[Bressler et al., 2008; Deshpande et al., 2009; Formisano and
Goebel, 2003; Fuhrmann-Alpert et al., 2007; Menon et al.,
1998; Sack et al., 2008; Sun et al., 2004, 2005].

One recently-introduced technique for determining tem-
poral relationships in time series data is Granger causality,
a method with a long history of applications in fields such
as econometrics [Geweke, 1982, 1984; Granger, 1969]. The
idea behind the method is relatively straightforward. For a
time series of interest, a model of the data uses past time
points from that same time series to predict future time
points. These predictions hopefully match the data well,
but invariably fit with errors that can be summarized by
an error variance. Granger causality takes advantage of
the fact that providing the model with more input may
improve its predictions. Specifically, if augmenting the
model by adding past time points from a second time se-
ries reduces variability in the prediction of the time series
of interest, as measured by a reduction in the variance of
the error, the second time series is said to be “Granger
causal” for the first. The use of the term “causal” is based
on the fact that the simple model predicts future time
points, and thereby imparts temporal directionality.

Much previous work has gone into the use of Granger
causality, including the aforementioned pioneering work in
econometrics by Granger and others [Geweke, 1982, 1984;
Granger, 1969] and, of more relevance here, in systems neu-
roscience, particularly in the analysis of local field potential
(LFP) data from extracellular recordings [e.g., Bernasconi and
Koenig, 1999; Brovelli et al., 2004; Chen et al., 2006a,b], and in
EEG [e.g., Hesse et al., 2003]. The temporal resolution of these
recordings was a significant boon to the analyses; thus, at
face value, the need for temporal resolution would seem to
be a significant hurdle for the application of this technique to
functional MRI data. However, two early studies [Goebel et
al., 2003; Roebroeck et al., 2005] demonstrated that Granger
causality techniques could be applied to fMRI data. In each
of these studies, the authors examined two subjects who per-
formed a stimulus-response mapping task. After demonstrat-
ing the efficacy of the technique on simulated data, the
authors showed that the Granger analysis identified regions
within visual, motor, and (broadly-speaking) cognitive con-
trol areas whose activity varied with the task in which sub-
jects were engaged. In two larger studies that followed, Abler

and colleagues [2006] were able to identify Granger influence
from auditory to motor cortices in a majority of the 11 sub-
jects performing a simple task in which subjects squeezed a
ball with either left or right hand based on the auditory cues
“left” or “right”; and Rypma and colleagues [2006] showed
that the influence of prefrontal cortex on other brain areas
was greater for slow than fast learners during a speeded
processing task. Subsequently, a number of interesting
reports [e.g., Bressler et al., 2008; Stilla et al., 2007] have con-
firmed and extended the utility of Granger causality in fMRI
analyses, including its ability to take advantage of multiple
variables at once [Deshpande et al., 2009].

As is true for any new technique, however, understand-
ing the use of Granger causality in fMRI analyses ideally
involves a combination of two approaches. The first is to
compare and contrast results of a Granger causality analysis
with those from a complementary multivariate fMRI tech-
nique, as has been studied with electrophysiological data
[e.g., Winterhalder et al., 2005]; another is to leverage such
analyses on what has already been learned of the function
of the underlying neural structures. In this article, we
address both of these possibilities. We first take advantage
of coherency, a method designed to characterize the relative
timing of brain activity [Biswal et al., 1995; Sun et al., 2004,
2005, 2007], to provide a comparison for the results of the
Granger analysis. In this method, itself also quite recent,
transforming time series data from the time domain to the
frequency domain segregates amplitude information from
phase information; and this phase information permits cal-
culation of a phase delay that can be used to determine the
temporal offset between time series. Secondly, we choose to
investigate each of these methods in the motor system, the
neurophysiology of which has been well-investigated and
thereby provides a biological reference for our results. As
Sun and colleagues [2005] argue, because electrophysiology
[e.g., Ikeda et al., 1992] and previous neuroimaging [e.g.,
Weilke et al., 2001] suggest that the supplementary motor
area (SMA) is active before primary motor cortex (M1) dur-
ing performance of a motor task, and because SMA is
known to be active in tasks requiring bimanual coordination
and sequencing [e.g., Lee and Quessy, 2003], motor tasks
provide a particularly compelling paradigm for fMRI stud-
ies interested in temporal effects.

Given that our goal is to compare these two methods,
we expect both similarities and differences. In a baseline
case—a linear system without feedback—the underlying
mathematics demonstrate that the phase delay and the
direction of Granger causality should correlate well. How-
ever, in a system with reciprocal connections, the results
can diverge [Granger, 1969]. More specifically, Granger
shows [Granger, 1969; page 434] that for a simple feedback
system consisting of two time series, the cross spectra give
rise to “coherency-based” coherence and phase diagrams
that are frequency-dependent. He thus concludes that
these diagrams are “clearly of little use in characterizing
the feedback relationship.” On the other hand, the
“Granger causality-based” coherence and phase diagrams
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are constant with respect to frequency—i.e., their analyti-
cal expressions depend only on the parameters describing
the feedback, not on the particular set of frequencies eval-
uated—and are thus robust to this complication.
Empirically, a case in which coherency-based and
Granger causality-based analyses differ comes from the
data of Brovelli and colleagues [2004] in a study of LFP
recordings in the behaving macaque. They showed “no
clear relation...between the time delay derived from the
mean phase difference and the Granger causality,” sug-
gesting that their recorded time series demonstrated feed-
back. On the other hand, as demonstrated by Roebroeck et
al. [2005] in fMRI data, artifactual causality can be induced
by the HRF and by subsampling of the BOLD activity (i.e.,
at the TR value). Therefore, they argued for a Granger cau-
sality measure that subtracts the influence in one direction
from the influence in the opposite direction—a choice that
eliminates the potential advantage of Granger causality
over coherency in distinguishing bidirectional influences.
Other issues also arise. A distinction due to the imple-
mentation arises from the fact that Granger causality in
most fMRI studies is implemented in the time domain
[Abler et al., 2006; Goebel et al., 2003; Roebroeck et al., 2005;
Rypma et al., 2006; but see Stilla et al., 2007], while coher-
ency [Curtis et al., 2005; Miller et al., 2005; Sun et al., 2004,
2005] is implemented in the frequency domain. Therefore,
comparing them in these domains is of practical importance
in assessing different studies. These Granger causality val-
ues do not differentiate amplitude and phase, as coherency
measurements do, and therefore do not distinguish between
a shorter, stronger temporal influence and a longer, weaker
temporal influence (Table I). One must also consider that
temporal measures are sensitive to HRF shape, and that
because coherency and Granger causality decompose the
time series differently, the results with respect to HRF shape
might also differ [Winterhalder et al., 2005]. Finally, the use
of conditional analyses—the ability of each method to dis-
tinguish direct influences between two brain regions from
those conditional upon the influence of a third area—has
only been extended to fMRI data for coherence [Sun et al.,
2004], although a multivariate analysis based on the

TABLE I. Issues impacting the use of Granger causality
and coherency

a. Factors that may affect the correspondence between Granger
causality and coherency
The presence of reciprocal connections between brain areas
Conflation of connection strength and temporal offset in the
time domain
Differences in HRF shape between areas
The length of the time series available

b. Factors that will affect the use of both methods
Low-pass filtering by the HRF
Sub-sampling of the BOLD response
Ensuring that interactions between areas are consistent when
the methods are applied

directed transfer function and related to conditional
Granger causality [Deshpande et al., 2009] has recently been
developed. In extending Granger causality to include condi-
tional effects, we may distinguish influences that have not
yet been shown in fMRI with phase delay.

To evaluate these methods, we performed a series of
experiments. We first examined the performance of
Granger causality and coherency on simulated data. Such
data permitted us to manipulate parameters such as the
coupling strength between time series, the latency of inter-
actions between time series, and the data sampling rate
(equivalent to the TR) to develop further intuition about
the function of each technique. Next, in keeping with the
early studies on Granger causality [Goebel et al., 2003;
Roebroeck et al., 2005], we assessed both methods on fMRI
data for single subjects performing a finger-tapping task
[Sun et al., 2005] to ensure that, as in these early studies,
we could obtain plausible relationships between brain
regions within an individual. Third, we extended these
findings to a group of 14 subjects; and finally, we returned
to both single-subject and group fMRI data to address con-
ditional Granger and coherence analyses to clarify the na-
ture of the interregional interactions we uncovered. In so
doing, we were able to investigate the relative advantages
and disadvantages of each analytic technique, in a neuro-
biological system about whose workings we had previous
knowledge, and to exploit the ability of functional MRI to
evaluate the interaction of many brain regions at once.

METHODS

In this section, we first address the motor task itself and
the initial steps in the fMRI data analysis, including prepro-
cessing of the raw data and generation of regions of interest
(ROIs) from the univariate analyses. We then address the two
multivariate techniques, Granger causality and coherency, in
depth. Both methods are initially discussed from a theoretical
perspective, after which are described the details of the com-
puter simulations and the application to fMRI data.

Subjects

As per Sun et al. [2005], 14 right-handed subjects gave
informed consent to participate in the study, per protocols
approved by the University of California at Berkeley and
in compliance with the Declaration of Helsinki. Four of
the subjects were women; ages of the subjects varied
between 19 and 29 years old (mean: 23.5). None of the
subjects reported a history of neurological or psychiatric
disorders, and none of them were taking any medications
at the time of the study.

Experimental Paradigm

Details of the experimental paradigm are fully described
in Sun et al. [2005]; here we briefly review the task (“ran-
dom”) and rest conditions, which were presented in a
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Experimental Design

TASK | OTHER

REST TASK REST s

Figure 1.

Experimental design: Subjects performed a motor task in which
a cued sequence of eight finger taps (“Sequence Presentation”)
was performed over 5800 ms. Each dashed line represents one of
the subject’s fingers (excluding the thumbs); when a “4” appeared
at the corresponding position, the subject tapped that finger. A
total of five finger-tapping sequences, separated by randomized

pseudorandom order within a mixed block/event-related
schedule. In each task condition, subjects performed a se-
ries of motor movements under the guidance of a set of
visual cues (Fig. 1). Each sequence of 8 successive visual
cues was presented for a total of 5800 ms, resulting in a
duration of 725 ms per cue. While a given cue was on-
screen, subjects were to respond with the corresponding
finger. In the rest condition, only the central fixation cross
was present; subjects were instructed not to perform or
rehearse any of the motor sequences. All subjects com-
pleted a total of five 8-min runs, each of which contained
two presentations of four types of condition blocks in
pseudorandom order. Only two of these condition blocks
are examined here [the task/“random” and rest blocks;
see Sun et al. [2007] for details about the other two condi-
tions (the “novel” and “learned” blocks)]. All stimuli were
back-projected onto a custom screen using E-prime presen-
tation software (http://www.pstnet.com). Responses were
collected with a pair of five-fingered MRI-compatible but-
ton boxes.

MRI Data Acquisition

Images were acquired with a 4-T Varian INOVA MR
scanner (http://www.varianinc.com) and a TEM send-

inter-trial intervals of 2200, 4400, or 6600 ms, was performed
during each task block. During the “rest” block, subjects were
asked simply to maintain fixation. The conditions subsumed by
the heading “other” were not analyzed in this article; refer to Sun
et al. [2007] for details.

and-receive RF head coil (http://www.mrinstruments.
com). Functional images were acquired using a 2-shot
gradient-echo echo-planar image (GE-EPI) sequence with a
relatively short repetition time (TR) of 543 ms per half
k-space, during which time ten 5-mm thick axial slices
with a 0.5 mm inter-slice gap were obtained from the top
of the brain caudally. Obtaining one half k-space per TR
allowed us to increase our sampling rate at the potential
expense of increased noise due to field inhomogeneities
not incorporated by the subsequent interpolation to full
k-space. Images were normalized to the Montreal Neuro-
logical Institute (MNI) atlas space. Other details of the
data acquisition can be found in Sun et al. [2005].

Preprocessing

After acquisition, functional images were reconstructed
from k-space using a linear time-interpolation algorithm
across shots of equal ordinal rank, based on sequences
developed by Menon and colleagues [Menon et al., 1997]
and previously published by our laboratory [Sun et al.,
2004, 2005, 2007]. In this technique (J.Ollinger, personal
communication), alternating halves of k-space were
acquired at each TR, and values for each half of k-space at
the intervening TR were linearly interpolated from the two
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neighboring time points. The resulting volumes were then
corrected for slice-timing skew using temporal sinc-inter-
polation, and for movement using a rigid-body transform.
Finally, these steps were followed by spatial, but not tem-
poral, smoothing with an 8 mm full-width at half-maxi-
mum (FWHM) Gaussian kernel. The task and rest
conditions were analyzed separately. For each condition,
and thus for each voxel in the brain, 10 data segments of
96 time points were obtained.

The issue of spatial smoothing requires particular com-
ment. In the articles of Goebel et al. [2003] and Roebroeck
et al. [2005], no spatial or temporal smoothing was
performed before the Granger causality analysis. This
approach avoids the potential introduction of further influ-
ences from neighboring voxels on the time series for a
given voxel of interest. However, our data were simply
too noisy for this approach. Without spatial smoothing,
group results were significantly degraded (see Supporting
Information Figure 1). For this reason, other studies that
have investigated temporal influences based on this data
set [Fuhrmann-Alpert et al., 2007; Sun et al., 2005], and on
which we base our use of coherency, have also relied on
smoothed data. Consequently, we performed preliminary
spatial smoothing, as described. Although we did not
anticipate that smoothing should differentially affect
coherency and Granger causality (e.g., Supporting Infor-
mation Figure 1), this possibility has not been otherwise
tested, given the above concerns about the unsmoothed
data.

Univariate Analyses

Per standard protocols, univariate analyses were per-
formed to identify regions with high task-related BOLD
activity. Regressors for the modified general linear model
assigned each “task” sequence a unique onset time, mod-
eled the duration of the sequence as a boxcar function of
5800 ms, and convolved these values with a canonical
HRF [Josephs et al., 1997]. T-statistics were applied to the
resulting parameter (“beta”) values to identify ROIs for
the subsequent analyses. Each of these ROIs met criteria
for significant activation (set as P < 0.05, corrected for
multiple comparisons by the family-wise error [Nichols
and Hayasaka, 2003]), and was chosen as per Sun et al.
[2005]: within anatomical masks defining each area, the
ROI consisted of the most significant voxel based on the
univariate T-maps of task-related activity, plus all sur-
rounding significant voxels within a 6 mm radius.

Multivariate Methods

Two different methods were used to examine networks
of functional connectivity that were active in the task. We
first address the mathematical underpinnings for Granger
causality and coherency, then turn to the details of the
implementations.

Granger Causality

For a given time ¢, the values at a set of points 1..n can
be represented by a vector x =[xy, ..., x,]'. Across time
points 1..T, a series of vectors x(t) = [x1(t), ..., x,(O]" gen-
erates a multivariate time series. To apply Granger causal-
ity techniques, one can model this time series by positing
that the value of each vector x(f) is linearly related to the val-
ues of the vector(s) that preceded it. In other words, the vec-
tor time series can be modeled as a linear multivariate vector
autoregressive (MVAR) process [Harrison et al., 2003].

-

I
—

x(f) =) A@)x(t—i)+e(t) 1)

1

where A(i) is a matrix of constants (refer to Bagarinao and
Sato [2002] or Sato et al. [2006] for more complex implementa-
tion including time-varying coefficients), p (the order) repre-
sents how far back in time we look to construct our model,
and e(t) is a residual/noise vector that captures the portion of
the data not fit by the MVAR. To fit the model, we need to
estimate the value of both the matrix A and the parameter p.
Values for the A matrix can be determined via maxi-
mum likelihood estimation (MLE). To solve for a given
time series, we construct the following matrix equation:

x(t) x(t—1) x(t—p)
x(t—1) x(t=2) - x(t-p-1)
: = : : x4
x(p+1) x(p) x(1)
e(t)
1
N e(t | ) @
e(p.+1)

Without manipulating the equation, we substitute vari-
able names for the above vectors and matrices.

x=XA+e 3)

This system is in most cases significantly overdetermined.
For the overdetermined system, we apply the MLE solution:

A=XTX)""X"x (4)

Once the A matrix is specified, the error terms are easy
to calculate:

e=x—XA (5)

where the errors e have covariance matrix ¥. Finally, we
determine the optimal order p for the model. As a general
rule, the model should account for as much of the variance
in the data as possible, as simply as possible—i.e., the
errors should be small, but the number of parameters
should also be small. Consequently, the above MVAR
model is fit for many different values of p, and we choose
the model that minimizes the Schwartz Criterion:
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S(p) = In(jz)) + " pp? ©

where |X | is the determinant of the error covariance ma-
trix for a given model, T is the number of time points
used to construct the model (i.e., 96, in our example), p is
the model order, and D is the model dimension. Given
that we want to minimize S, the first term accounts for the
fact that we want the model to fit our data well—i.e.,
lower values of In(I1X1) are better—while the second
penalizes the model as its complexity increases.

To illustrate application of Granger causality, we take a
simple case in which we desire to compare the time series x
and y of two different voxels. We fit the following equations:

x(t) = zp:Ax(i)X(f —i)+e(t), covie()]=2 (7)
i=1
P

y(t) = Y Ayt —i) +ey(t), covle, (] =A,  (8)

I
—

We then set z(t) = {x(t%

y(t
P

2(t) = S ALi)z(t — i) + eu(t), covles(t)] = Q = ET ﬂ
i=1

)

The essence of the technique is the following: if including
time series y(t) in our model of x(t), as we do by construct-
ing z(t), helps us to improve the fit—or, in equivalent terms,
helps us to reduce the variance of the error term—time se-
ries y(f) can be said to be “Granger causal” for time series
x(t). Geweke [1982, 1984] capitalized on this model structure
to define two measures describing how well the time series
for one voxel predicts that of another:

lAy\) (\2x|>
Fry=In|—~|,F)x=1n
o (\Azl o | Z:|

In F,_,, for instance, if including time series x(t) in the
model of y(t) improves the prediction, then the covariance
term in the denominator will be less than that in the nu-
merator, and F,_., will be greater than zero. The time se-
ries x(t) is therefore said to be “Granger causal” for time
series y(t). Lastly, not all the influence of x(t) on y(t) will
be Granger causal; some will be instantaneous. This influ-
ence is captured by the term F,,;:

IZZIIAZ\)
Q]

J and fit the model yet again:

(10)

Foy = ln( 11)

The total linear dependence F, , is defined as the follow-
ing sum:

Fx,y :ny +Fy~>x +Fx*>y (12)

For the remainder of the article, due to reasons dis-
cussed by Roebroeck et al. [2005] and described more fully
below, we will focus on the Granger causality difference
(Fx—y—F,_) for each segment, which we hereafter refer to
as the Granger causality difference value (GCD). For the
sake of terminology, we also refer to the Granger causality
simultaneity value F,, as the “GCS.”

Conditional Granger Causality

One caveat with the analysis of Granger causality data
is the interpretation of the influence measures. Take, for
example, a data set in which time series x(t) helps to pre-
dict time series y(t). The etiology of this influence may
truly be related to a direct effect of x(t) on y(t), but it could
also be due to the fact that the processes represented by
x(t) and y(t) receive a common input at different time
lags. To address this problem, Geweke [1984] delineated
the idea of so-called “conditional” Granger causality, so
defined because the interaction between the two time
series of interest was “conditional” on a third. In other
words, suppose that, in addition to time series x(f), with
noise covariance X,, and time series y(t), with noise covari-
ance A, there is a third time series r(t) that may influence
x(t) and y(t):

P
(13)
=

r(t) = > A(i)r(t —i) +e(t), covle(t)] =T,

In this case, we set w(t) = [x(t) y(f) ()] and s(t) = [x(t)

r(t)]", producing the following noise covariance matrices
when we model the time series together:

Zy ny Cyr
Xy ny
cov(ey) =Q= |Cpn Ay Cy |, whereQ;, = {C A }
Cu Cy Tu e
% er}
cov(es) =d =
( ) |:C‘rx l—‘s

(14)

We can then derive, in analogy with the non-conditional
case, the following measures [Geweke, 1984]:

Zol|Aw||T Q1,||T
ny\r:nyr*Fr-xy:1n<| zv|||Qw‘|| W|) 71“(‘ 1|2g|2|| W|> (15)

Fyﬂx\r = Lyr—x — Frx

=In ( ‘le) —In <|ZX|> (and similarly for F,_,;,) (16)
ol 2|

Intuitively, we perform the same type of operations as
in the non-conditional case, but always including the time
series 7(t) in our models.
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Coherency

As discussed in detail by Sun et al. [2004, 2005], the prin-
ciples behind coherency derive from the Fourier analysis of
time signals. For a time series x(t), one obtains the frequency
representation by applying the Fourier transform:

T

x(x) _ Z x(t)EZnik(tfl)/T

t=1

(17)

where A equals the set of discrete frequencies [-T/2 ...
T/2]. This transform results in a series of sine waves x(\)
that are characterized by both an amplitude and a phase,
rather than a series of time points x(t) that are character-
ized by different amplitudes; the data have not changed in
any way other than their representation. The coherency
R,(A) between two time series x(f) and y(t) is then calcu-
lated by computing the frequency-by-frequency product of
their Fourier transforms x()\) and y(\), normalized by their
respective power spectra (i.e., how much “amplitude” is
present in each):

Ry (M) = 18)

where y()\)* refers to the complex conjugate of y()). The
coherence C,,()\) utilizes the amplitude component of the
coherency to calculate the Fourier equivalent of covariance:

Cuy (1) = [Ruy (W) (19)
while obtaining the phase spectrum P, ()):
Pyy(\) = arg[Ryy(M)] (20)

allows one to subsequently calculate a phase delay.

Conditional Coherence

Similarly to Granger causality, one can condition the
coherence between two time series on a third. As per Sun
et al. [2004], the coherence between two time series x(f)
and y(t), conditioned on a third time series r(t), can be
described as:

Cyylr = |R"y(7‘)_er(k)Rry(x)|2
=Ry = Ry ()

1)

Simulations

As per Roebroeck et al. [2005], we generated simulated
time series to model the interaction between two neural
populations by constructing a bidimensional first-order
VAR process for which

A= {2'82 O.%ZJ’ covie(t)| =X = “) ?J (22)

where ¢ and d are constants that determine how strongly
to couple the two time series, and the constant 0.82 was
chosen to be maximal without inducing instability for any
condition (i.e.,, without producing a leading eigenvalue
greater than 1). Because of computer memory limitations,
the temporal resolution of each time step was limited to
10 ms, and the duration of each time series was set to 2'°
time steps, or 655.36 s, to facilitate the use of the fast Fou-
rier transform for coherency calculations. This duration
does not include an initial 2000 time steps that were dis-
carded in order “to allow the system to enter a steady
state, to introduce the delay, and to avoid boundary effects
in subsequent filtering” [Roebroeck et al., 2005]. The cou-
pling strength c from time series 2 to time series 1 varied
from 0.0 to 0.5; the latency of this influence varied from
10 ms to 500 ms. For the case in which influence was
bidirectional, d was set to 0.125. Next, each of the time
series was convolved with a model of the HRF (via the
function “spm_hrf.m” from SPM2, with time parameter
0.01 s). The resulting time series were normalized to zero
mean and unit variance, after which 20% Gaussian white
noise was added to simulate BOLD noise. Finally, the data
were down-sampled to simulate different TRs of 0.64 s,
1.28 s, 2.56 s, and 5.12s, and, after another renormalization,
corrupted with 20% Gaussian white noise intended to rep-
resent measurement noise. Thus, despite the fact that le
time steps were initially generated, the analyzed data com-
prised a significantly subsampled portion. Twenty differ-
ent runs for each of the 64 combinations of connection
strength, delay, and TR parameters provided the data for
analysis with each of the multivariate techniques (Granger
causality and coherency); a 3-way analysis of variance was
used to evaluate each technique, relative to those parame-
ters. For coherency, analysis was restricted to frequencies
from 0 to 0.15 Hz, in keeping with our previous work
[Sun et al., 2004].

For the conditional coherence and Granger causality
cases, we analyzed the analogous model for three time se-
ries, utilizing the following connectivity matrix:

0‘90.0(113
A= 10009 C23

0.00.00.9

(23)

where ¢35 and cy3 represent the coupling strength from
time series 3 to time series 1 and 2, respectively.

MRI Data
Granger causality, fMRI implementation

Preprocessing of the fMRI data gave rise to 10 sequences
of 96 time points for each of the task and rest conditions.
All sequences were then mean-centered. Because most of
these segments were not temporally contiguous, they were
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all analyzed separately. For each segment, we fit an
MVAR separately for the seed ROI and for every other
voxel in the brain. We removed from the analysis those
voxels for which the GCS value was < 0.02, as Roebroeck
and colleagues [2005] reported such voxels to be strongly
identified with draining veins. Differences were averaged
over the 10 segments to produce a single value for each
voxel.

To define significant voxels in single-subject, single-con-
dition maps, we compared the values for each condition to
separate, “null-distribution” values generated by boot-
strapping. We generated a suitable “null” time series by
transposing the first and second halves of the reference
time series, thereby largely preserving the temporal dy-
namics of each time course but altering the relationship
between time courses [Roebroeck et al.,, 2005]. Once the
null distributions were generated for every voxel, the false
discovery rate [Genovese et al.,, 2002] was applied to
define significant activations, at a P < 0.05 level, for each
subject in each condition. To compute multi-subject maps,
we applied a non-parametric permutation analysis via
SnPM99 [Nichols and Holmes, 2002] to the normalized sin-
gle subject maps to account for the fact that the distribu-
tion of GCD and GCS values need not conform to
Gaussian assumptions. Importantly, all calculations were
performed for each subject in native space before normal-
izing. We ran SnPM99 using no confounding covariates,
an exact number of permutations (16,384), variance
smoothing of 8 mm, AnCova normalization, and no
threshold masking. For the resulting GCS (but not GCD)
multi-subject maps, most voxels tended to be significant
with respect to zero across subjects because the GCS mea-
sure is always zero or greater. To emphasize the structure
in these multi-subject maps (Figs. 7 and 10), we thresh-
olded the set of significant voxels arbitrarily but consis-
tently in all relevant figures. The corresponding
unthresholded set of significant voxels can be found in
Supporting Information Figure 2.

To create the reference function for the conditional anal-
yses, we generated two separate conditional time series.
For the stimulus-related conditional time series, we con-
volved an impulse train representing trial onset times with
SPM’s canonical HRF [Sun et al., 2004]. For the SMA time
series, we averaged all time series within the ROL

Coherency, fMRI implementation

After preprocessing, each of the 10 time segments was
mean-centered, windowed with a 4-point split-cosine bell,
and concatenated with the other segments to produce a
condition-specific 960 time-point series. Consequently,
every voxel in the brain generated two concatenated time
series—one for the task condition, and one for the rest
condition.

The time series generated for the seed (ROI) region was
then compared with every other voxel in the brain. Coher-
ency values were obtained by applying a fast Fourier

transform (Matlab 6.5, http://www.mathworks.com) to
each, implemented via Welch’s periodogram averaging
method using a 64-point discrete Fourier transform, Han-
ning window, and overlap of 32 points. Condition-specific
coherence and phase delay maps for the seed ROI were
then computed using (1) the band-averaged coherence
[Sun et al., 2004] and (2) the average slope of the phase
spectrum [Sun et al., 2005] within the 0-0.15 Hz frequency
band.

Single- and multi-subject maps for the coherency analy-
sis were computed as described for the Granger causality
case, with the following exceptions. First, the precision of
the phase delay estimates for a single condition was
derived by computing the root mean squared error
(RMSE) of the linear fit to the phase spectrum over those
values within the frequency band of interest (0-0.15 Hz).
Only those areas were displayed for which the variance in
the delay was less than 0.5 s with 95% confidence interval
[Sun et al., 2005]. Second, to compute correlations between
coherence results and those obtained by other methods for
our simulations, we transformed the values by the inverse
hyperbolic tangent (tanh ™ IRy (1)) to generate an approxi-
mately normal distribution [Rosenberg et al., 1989].
Finally, for the resulting coherence (but not phase delay)
multi-subject maps, most voxels tended to be significant
with respect to zero across subjects because the coherence
measure ranges between zero and one. To emphasize the
structure in these multi-subject maps (Figs. 7 and 10), we
thresholded the set of significant voxels arbitrarily but con-
sistently in all relevant figures. The corresponding unthre-
sholded set of significant voxels can be found in
Supporting Information Figure 2.

RESULTS

To gain an intuition for the behavior of both Granger
causality and coherency, we first investigated simulated
data in which such variables as the coupling strength
between regions could be explicitly manipulated. We next
turned to fMRI data. We initially applied both methods to
a representative subject, in keeping with previous reports
[Roebroeck et al., 2005; Sun et al.,, 2004, 2005], before
applying them to the group of subjects as a whole. These
analyses were performed with respect to the bivariate case
(i.e., the case in which the influence of additional time se-
ries was not considered). Finally, we repeated the analyses
for a single subject and a group of subjects in the “condi-
tional” case in which the influence of a third time series
was explicitly addressed.

Simulations

To explore the Granger causality technique under differ-
ent parametric conditions, we first generated multiple
instances of time series from two simulated brain regions
in which we systematically varied the strength of their
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connection (the “coupling strength” between them), the
temporal delay of their connection (the “latency” between
them), and the sampling rate (i.e., the TR). To facilitate
comparison with previous data, we used a simple model
similar to that of Roebroeck et al. ([2005]; refer to Methods
for further explanation) and evaluated their proposed
measure of Granger causality—the difference between the
influence of region 1 on region 2 and the influence of
region 2 on region 1 (ie., F;_,—F, 1), which we subse-
quently refer to as the Granger causality difference, or
GCD. To emphasize this connection to previous work, we
first addressed both the behavior of the GCD measure
itself and its correlation with the phase delay component
of coherency. We then expanded our analysis to include
other measures provided by Granger causality, including a
measure of simultaneous influence (which we hereafter
refer to as the Granger causality simultaneity measure, or
“GCS”), and compared these measures to the two meas-
ures provided by coherency (i.e.,, coherence and phase
delay) under additional conditions in which such variables
as the shape of the HRF were manipulated. Finally, we
attempted to account for the effect of additional influences
on the two time series of interest, and to determine the
amount of data necessary for our fMRI analyses.

Results of the first GCD analysis are illustrated in Figure
2a. As is easily visible, the magnitude of the GCD varied
strongly with the coupling between the two time series
(P < 10 by 3-way ANOVA), as well as the latency (P <
10~°) and the sampling rate/TR (P < 107°). All 2-way and
3-way interactions were also significant. Note that, inde-
pendently of the coupling and delay parameters, the sam-
pling rate, or TR, affected the GCD value; when the TR
reached 5.12 s, the differential influence declined as the
sampling became too coarse to allow identification of tim-
ing differences on the time scale of interest. On the other
hand, a range of TRs from 0.64 s to 2.56 s produced robust
results, and a spectrum of latencies and coupling strengths
were detectable—though in all cases greater coupling
strengths and longer latencies gave rise to stronger results.

These values were clearly related to those obtained by
determining the phase delay of these time series (Fig. 2b).
Across all latencies, and excluding the atypical sampling
rate of 5.12 s, GCD and phase delay values were highly
correlated (r = 0.33, P < 107°). Excluding trials in which
the coupling strength was set to zero, this correlation
between GCD and phase delay rose to 0.40 (P < 107°).
This correlation might be stronger, were GCD values not
also reflective of coupling strength (unlike the phase delay
measure, which depended only on latency). For a TR of
1.28 s, for instance, Figure 2 shows that a GCD value of
~0.10 could correspond to a coupling strength of 0.5 with
a latency of 170 ms, or to a coupling strength of 0.17 with
a latency of 500 ms.

To further assess the relationship of these techniques,
both to simulated data and to each other, we modified the
inputs and connections for the models. In Figure 3a, we
show the variation of coherence, phase delay, GCS value,
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Figure 2.

(A) lllustrates the behavior of the Granger causality difference
value (GCD) as the different parameters within the simulated
time series—coupling strength, latency, and sampling rate (or
TR)—were varied, where each bar represents the average of 20
different time series with the same parameters but different
noise inputs. Note that a particular Granger value does not
uniquely specify the nature of the functional connectivity
between the two time series. For a TR of 1.28 s, for example, a
Granger value of ~0.1 could represent a latency of 0.17 s with
a coupling strength of 0.5, or a latency of 0.5 s with a coupling
strength of 0.17. (B) Demonstrates the performance of the
phase delay component of coherency on the same simulated
data. Note that the phase delay measure is quite noisy when the
simulated time series are uncoupled (i.e., coupling strength of
zero).

GCD value, and the separate components of the GCD
measure for one of the baseline cases included in Figure 2.
Coherence varied significantly with coupling strength
(P < 107° by ANOVA) but not with latency (P = 0.0942),
whereas phase delay did not vary with coupling strength
(P = 0.8509) but showed a strong relationship with latency
(P < 107°) after exclusion of the extremely noisy values
obtained when areas 1 and 2 were unconnected (i.e., a cou-
pling strength of zero). In contrast, GCS varied significantly
with both coupling strength and latency (P < 10 °), as did
GCD (P <« 107°). When we decomposed the GCD value
into its individual components, the influence of area 1 on
area 2 mirrored the behavior of the GCD value. However,
as previously discussed by Roebroeck and colleagues
[2005], even with no neural connection from area 2 to area
1, spurious influence from area 2 to area 1 was seen in
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(A) In this case, a neural influence exists from area | to area 2,
but not from area 2 to area |. HRFs are identical (overlapping
curves labeled | and 2). As the coupling strength (see inset)
increases, the coherence increases. As the latency (see x-axis)
increases, the phase delay increases. GCS, as for coherence,
varies primarily with coupling strength. GCD increases with
both parameters, as do the individual components of GCD
(Fi—> and F,_.|). Note that even without any connection from
area 2 to area |, artifactual but statistically-significant Granger
influence can be noted as the latency of coupling increases. (B)
In this case, the asymmetric neural influence from area | to area
2 remains unchanged, but the HRF for area 2 peaks earlier than
that for area | (HRF data courtesy of Handwerker et al., 2004).

Although the coherence value—which does not depend on HRF
shape—remains unchanged, both the phase delay and Granger
causality values reflect the shape of the HRF, not the underlying
neural coupling. Moreover, as the coupling strength increases,
the Granger causality value becomes progressively larger in the
direction opposite the neural influence. (C) In the final case,
there is a reciprocal influence between areas | and 2. The black
arrow pointing from | to 2, as for (A) and (B), represents the
coupling strength that is modified; the gray arrow from 2 to |
represents a fixed coupling strength of 0.125 and a latency of
100 ms. As both the strength and the latency of the connection
from | to 2 increase, the phase delay and GCD reflect a shift
from negative to positive values.
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most conditions as a result of both the filtering of the neural
responses by the HRF and the downsampling of the BOLD
signal inherent in the discrete acquisition time (i.e., the TR).

In Figure 3b, we addressed the possibility that the HRFs
from different brain regions might themselves be different
in shape [Handwerker et al., 2004]. In this example, the
neural influence was directed from area 1 to area 2, but
the HRF for area 2 appears to peak earlier than that for
area 1. Coherence remained unchanged, in keeping with
the fact that it is insensitive to HRF shape [Sun et al,
2004]. However, there was a marked change in the phase
delay. It was once again dependent only on latency (P <«
107°), but now negative, suggesting that area 2 led area 1
and reflecting the relative timing of the HRFs rather than
the underlying neural influence—even for coupling
strengths (e.g., 0.5) that produced robust changes in coher-
ence in the plot above, and robust phase delay differences
in Figure 3a. For GCS, the relationship with coupling
strength persisted, although there was clearly an interac-
tion with latency as well (P < 10 °). GCD maintained its
relationships with both coupling and latency, but, as for
phase delay, in the direction opposite the neural influence.
Moreover, as the coupling between areas 1 and 2
increased, GCD became more negative—incorrectly sug-
gesting that the influence from area 2 to area 1 was
increasing, rather than that from area 1 to area 2. This rela-
tionship, while it reflects the change in coupling strength
between the two areas, could potentially be misconstrued
to represent a latency change. The measures of individual
influence from area 2 to 1, and from area 1 to 2, confirmed
the trend seen in the GCD value.

It is also possible that areas 1 and 2 might share a recip-
rocal coupling. In Figure 3c, the strength of the connection
from area 1 to area 2 was varied in the presence of a con-
stant coupling strength of 0.125 and latency of 100 ms from
area 2 to area 1. In this case, both coherence and GCS were
non-zero at “zero” coupling strength because of the recipro-
cal connection from area 1 to area 2; and both phase delay
and the GCD measure showed a change in the direction of
influence from negative (i.e., directed from area 2 to area 1)
to positive as the strength of the connection from area 1 to
area 2 increased. The separate influence measures contribut-
ing to the GCD value shared a change with increasing con-
nection strength. However, note that the data for F2 — 1
(Fig. 3c) in which a reciprocal connection was present, were
not readily distinguishable from those for F2 — 1 (Fig. 3a)
in which this connection was absent.

A separate question concerns the behavior of both
Granger causality and coherency values in a larger net-
work. In particular, for more than two areas, it is possible
that the bivariate measures computed above could be con-
founded by network interactions. In one simple example,
two areas could truly be coupled, or they could both only
appear to be coupled because they received a common
input. In either of these cases, a bivariate analysis might
suggest a connection between the areas, even though, in
the latter case, no such connection existed. To address this

possibility, we examined a scenario in which two hypo-
thetical ROI (“1” and “2,” in the Figure) and a third area
(“3”) were variably connected. To simplify the analysis,
areas were either coupled with a weight of 0.5 or not
coupled at all; and the latency of the connection from area
3 to area 2 was always shorter (500 ms) than the latency of
the connection from area 3 to area 1 (1000 ms). So-called
“naive” and conditional analyses were performed for
GCD, GCS, and coherence, where the conditional analysis
consisted of evaluating a relationship between two time
series 1 and 2 while accounting for the effect of (or “condi-
tioned upon”) the input from area 3.

Reassuringly, for both the naive and conditional cases,
the methods suggested a connection between areas 1 and
2 when a connection existed (Fig. 4, right two columns
within every bar graph). Moreover, for all cases in which
areas 1 and 2 did not receive a common input from area 3
(i.e.,, rows A-C), the naive analyses correctly predicted
their connectivity. However, in the case of interest—in
which areas 2 and 1 were not connected, but both received
a common, temporally-offset input from area 3 (row D,
left two columns in each graph)—the naive methods both
indicated significant coupling. Both Granger and coher-
ence-based conditional analyses correctly produced a sig-
nificantly lower connectivity value.

Importantly, these declines were relative. The values
obtained in the conditional case for GCD, GCS, and coherence
remained significantly different from zero, and thus, were
more useful in comparison to the naive analysis. This result
was to be expected: as discussed by both Roebroeck and col-
leagues [2005] and Sun and colleagues [2004], such factors as
low-frequency filtering by the HRF and subsampling of the
data lead to artifactual changes in connectivity that are
unlikely to be directly addressed by this conditional approach.
On the other hand, if all three areas were connected (row D,
right two columns in each graph), the conditional analysis
reduced the Granger and coherence values to a significantly
lesser extent. Finally, one interesting aspect of these data is
that the conditional analysis need not always reduce the
Granger/coherence values; in the case in which area 1
received input from both areas 2 and 3, but areas 2 and 3
were not connected (row C, right two columns), the condi-
tional analysis produced an increased connectivity value.

One final question concerns the amount of data required
to apply these techniques reliably. Coherency analyses, for
example, might require more time points to successfully
model the low frequencies inherent in the hemodynamic
response, a finding that would potentially render the cur-
rent implementation of Granger causality more advanta-
geous for shorter data sets. Figure 5 represents the results
of such an analysis for simulated data sets ranging in size
from 32 data points to 512 data points, across three differ-
ent values of the sampling rate (TR). Coherence, GCS, and
GCD appear most robust to shorter time series, while
phase delay is more sensitive to the number of data points
(but refer to Lauritzen et al. [2008] for potential methodo-
logical improvements in the phase delay measure). In the
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Figure 4.

Performance of the methods in more complex networks, and
the role of conditional values (for both Granger causality and
coherence), are shown in this figure for a simulated interaction
between two hypothetical areas “1” and “2”. The first column
shows the connectivity from a hypothetical area labeled “3” that
is capable of providing input to both | and 2. The second dis-
plays the results of a conditional GCD analysis, as compared
with the non-conditional (“naive”) analysis. The third and fourth
columns plot results for conditional GCS and coherence analy-
ses, respectively. Areas | and 2 are either uncoupled or coupled
as indicated underneath each of the three right columns. In all
cases, the presence of an arrow indicates a connection strength
of 0.5; the absence of an arrow (or an arrow with an “X”

fMRI analyses below, a total of 960 data points permitted
us to provide an asymptotic comparison of these methods.

fMRI Data, Single Subject

To address the performance of Granger causality and
coherency on BOLD data, and to ensure that we could
obtain meaningful results in individual subjects, we exam-

through it) indicates no connection. The network is configured
such that area 2 influences area | with a latency of 500 ms, area
3 influences area | with a latency of 1000 ms, and area 3 influ-
ences area 2 with a latency of 500 ms. By designing the latencies
in this way, we see in row D that both techniques—Granger
causality and coherence—show a link between areas | and 2
even when there is no connection between them (dark gray
bars, leftmost in each graph). Using a conditional analysis signifi-
cantly reduces this effect, but does not completely eliminate it.
All comparisons between naive and conditional bars marked by
an asterisk are significant (P < 0.05, Wilcoxon rank sum test).
Additionally, the differences between conditional values in row
D (noted by the crossbars) are significant.

ined data from a single subject performing the motor task
described in Figure 1. Figure 6 presents the FDR-thresh-
olded maps in native space for subject 212 in the “task”
compared to the “rest” condition. In the coherence map,
high values (in yellow) show those areas that are coherent
with the reference seed area—in this case, either the SMA
or left primary somatomotor cortex (LM1). As expected,
this sequential finger-tapping task activates a number of
regions within the motor network, including presumptive
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Figure 5.
The performance of both coherency and Granger causality varies
with the number of data points. On the y-axis is shown, for each
method and number of data points, the correlation of the values
obtained across all nonzero coupling strengths and latencies with
the data obtained for the same method in the case of 512 data
points. (As a consequence, all methods show a correlation of one
by construction at point 512.) Results are shown for three differ-
ent TR values. In each case, phase delay requires more data before
converging to asymptotic performance.

SMA and pre-SMA, premotor cortex (PMC), primary
somatomotor cortex, and posterior parietal (PPC) areas
[Sun et al., 2004, 2005]. In the rest condition, note that the
coherence values do not all become subthreshold in these
areas; however, the number of suprathreshold voxels is
smaller. As expected, a similar set of brain areas is coher-
ent with the LM1 seed. A similar but more restricted set of
strongly-active regions is identified by the GCS analysis.
This result may stem from the fact that GCS is sensitive
(as the name implies) to simultaneous influences; as the
latency between regions changes, these influences might
better be captured by GCD. Coherence, however, is the

spectral equivalent of covariance in the time domain, and
thus captures relationships across multiple latencies.

The GCD analysis applied to the SMA seed identifies a
similar network of areas. Cool/blue colors signify that
those voxels are Granger causal for the seed—i.e., that
those voxels are sources of influence onto the seed—while
hot/red colors signify the opposite—i.e., that the seed is a
source of influence onto (is “Granger causal for”) those
voxels. Consistent with animal studies (e.g., [Ikeda et al,,
1992]), the SMA is Granger causal for the posterior regions
identified by the coherence analysis (bilateral primary
somatomotor cortex and PPC). Note that the direction of
this influence changes appropriately when the seed
changes. For a left M1 seed, not only the SMA activity, but
also activity from other areas within the precentral gyrus
and central sulcus, appear to influence activity in LMI1.
Consistent with our simulations, the GCD values may cor-
relate with, but are not determined by, the coherence val-
ues. With use of the left M1 seed, for example, the
coherence values are qualitatively similar to those obtained
with the SMA seed, while the GCD values are not.

The phase delay maps demonstrate the relative latency
between the SMA and all other brain regions. As for the
Granger maps, cool/blue colors indicate voxels that lead
the reference region, whereas hot/red colors indicate vox-
els that lag the reference region. The results are similar,
though not identical, to those of the GCD analysis. Activ-
ity in the SMA leads that in the primary somatomotor cor-
tices, while activity in LM1 appears to lead activity in
right PPC, at least in the task condition.

fMRI Data, Group

These relationships also appear to hold for group data
across 14 subjects. Figure 7 presents the normalized,
group-averaged data for the SMA (left columns) and LM1
(right columns) seeds. The results for the coherence analy-
sis confirm the initial indications from the single subject
maps shown in Figure 6. A network of areas, including
the SMA, bilateral premotor (PMC), bilateral primary
somatomotor cortex, and bilateral PPC, are active during
performance of the motor task, while fewer significant
voxels are seen during rest. A similar, though not identi-
cal, pattern is seen for GCS.

For the SMA seed, the GCD analysis shows a significant
influence originating from the SMA on posterior (PMC,
M1, PPC) areas, and the phase delay analysis confirms
that the SMA leads an area in the right post-central gyrus.
Interestingly, the number of suprathreshold voxels is
much larger for the GCD map than for the phase delay
map, potentially consistent with the fact that Granger cau-
sality also reflects coupling strength. For the LM1 seed, on
the other hand, GCD shows only a significant influence
from LM1 onto the left PPC. The resting maps, and both
the task and rest maps for the phase delay analysis, did
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Figure 6.

Shown in the two left columns are the results of native-space
exploratory analyses, using a seed in the SMA, for subject 212.
The two right columns demonstrate results for a left M1 (LMI)
seed. Areas shaded in “hot” (red—yellow) hues represent positive
values; areas shaded in “cool” (blue—green) hues represent nega-
tive values. Thus, activity in a red voxel in the GCD or phase
delay maps occurs after (i.e., lags) activity in the seed region.
Green circles indicate the location of the SMA or LMI ROI. Each

not give rise to any significant voxels for this seed
(denoted by the green asterisks in the Figure).

For the GCD and phase delay analyses for the LM1 seed
in Figure 7, the limited number of significantly active areas

“task” and “rest” map is created by computing the false discovery
rate for a P-value of 0.05, as determined by comparing with the
null distribution (described in Methods). Those images marked by
a green asterisk (*) contained no voxels significant at P < 0.05,
corrected. Among other findings, the maps demonstrate that ac-
tivity in the SMA leads, rather than lags, activity in the left Ml
seed region. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

within both the task and rest conditions raises the question
as to whether the group maps actually reflect the differen-
ces seen in the single subject map of Figure 6, or, alterna-
tively, whether the single subject map is not representative
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In this figure can be seen group maps thresholded at P < 0.05
(corrected) across all 14 subjects, for the range of values dem-
onstrated by the associated color bars, for each of the analysis
methods. The left two columns represent values produced for
the SMA seed in both the task and rest conditions; the right
two columns represent values obtained for the LMI seed in

of the group behavior. By relaxing the uncorrected signifi-
cance level from P < 0.05 (corrected, via SnPM99) to P <
0.05 uncorrected (from a pseudo-t map provided by

both the task and rest conditions. Note that the slice is not
identical for the two seeds (Z = 60 for the SMA seed, Z = 66
for the LMI| seed). Those images marked by a green asterisk (*)
contained no voxels significant at P < 0.05, corrected. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

SnPM99) in Figure 8, the underlying structure of the map
becomes clearer. In keeping with the single-subject find-
ings, the group maps demonstrate preceding activity in
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Figure 8.

Here the threshold on significant voxels is relaxed to P < 0.05
(uncorrected), to show the pattern of values obtained for both
GCD and phase delay for the left primary somatomotor cortex
(LM1) seed. In the task condition, there is a non-significant tend-
ency for activity in the SMA, the right premotor, and the right
primary somatomotor cortex to be Granger causal for activity
in LMI, while the opposite is true for activity in the bilateral
posterior parietal cortices. The phase delay map is grossly con-
cordant, though it appears to be more sensitive to BOLD signals
that precede those in LMI. At rest, these timing differences are
less prominent. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

the SMA, and the subsequent activity in the bilateral PPC
also appears.

fMRI Data, Single Subject, Conditional Analysis

To assess the extent to which the bivariate measures
might be dependent on unexamined inputs within a larger
network, we next applied conditional coherence and
Granger causality methods to the task period in our em-
pirical data for subject 212 for a right premotor cortex
(right PMC) ROL This ROI was chosen because the pre-
ceding maps suggested that it both received leading and
provided lagging influences, and we suspected that the ex-
istence of both types of connections would render the
maps most sensitive to differences uncovered by the con-
ditional analysis. In Figure 9, the naive results (left col-
umn) once again highlight the network of motor areas
involved in this subject’s performance of the task. The co-
herence map appears comparable with that for the SMA
seed in Figure 5, while the results for GCS are once again

similar to those of coherence. The naive GCD analysis con-
firms that the right PMC is influenced by activity in the
area of the SMA and right precentral gyrus, and itself
influences activity in the bilateral posterior parietal cortex.

Conditioning on either the stimlus or SMA activity dif-
ferentially affects these results. When conditioned on the
stimulus, the coherence map remains relatively un-
changed, in keeping with the findings of Sun and col-
leagues [2004]—i.e.,, as they showed, there remains
significant coherence between motor areas even at rest,
arguing that removal of the stimulus contribution would
have a minimal effect. The GCS analysis shows a decline
in connectivity of the R PMC seed with the homologous

R Premotor Seed, Task Condition

Conditional, STIM Conditional, SMA

Maive
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06

0.01-0.01

Figure 9.

Here can be seen the results of the conditional analyses of the
data obtained for the right premotor (PMC) ROI for subject
212 during task performance. The non-conditional (“naive”) anal-
ysis is shown in the left column; the analysis conditioned on the
stimulus is shown in the middle column; and the analysis condi-
tioned on the SMA activity is shown in the right column. The
slice was chosen to include the right PMC ROI (green circles).
For the coherence analysis, conditioning on the stimulus does
not markedly change the magnitude of the response, consistent
with the fact that there remains significant coherence between
motor areas even when no stimulus is present (i.e., in the rest
condition); whereas conditioning on the SMA removes much of
the coherent activity. These differences are less apparent for
GCS. For GCD, the “leading” influence of the SMA on the right
PMC remains after conditioning on the stimulus. Conditioning
on the SMA, on the other hand, leaves small lagging and leading
influences with bilateral motor/pre-motor areas. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

* 3490



¢ Granger Causality in Motor Systems ¢

area on the left; and in the GCD map, a leading influence
in the area of the SMA and adjacent premotor cortex per-
sists, while the extent of influence onto more posterior
areas declines. When conditioned on activity in the SMA
ROI, however, there is a marked decline in the coherence
values, again consistent with the existing literature on the
role of the SMA in motor systems; a relative lack of
change in the GCS values; and a loss of influence from R
PMC on more posterior areas.

R Premotor Seed, Task Condition

Maive Condiional, SMA

Conditional, STIM

GCS Coherence

GCD

0.0 00

GCD, uncorrected

Figure 10.

Here can be seen the results of the conditional analyses for
group data obtained for the right premotor (PMC) ROI during
task performance. The non-conditional (“naive”) analysis is
shown in the left column; the analysis conditioned on the stimu-
lus is shown in the middle column; and the analysis conditioned
on the SMA activity is shown in the right column (for slice
Z = 58). Images in which no voxel reached a significance of P <
0.05, corrected, are denoted by green asterisks. Because such
images only occur in the GCD analysis, the bottom row shows
the same GCD maps for an uncorrected SnPM99 “pseudo-P”
value of 0.05 to reveal the underlying map structure. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

fMRI Data, Group, Conditional Analysis

The group conditional maps (Fig. 10), thresholded at
P < 0.05 (corrected) via SnPM99, show broadly similar
results. The coherence findings, interestingly, continue to
demonstrate coherent activity when conditioned on the
stimulus. The conditional GCS maps again identify a
region surrounding the seed itself, while the conditional
GCD maps show very little influence that reaches statisti-
cal significance—limited to areas in the right post-central
gyrus and left precuneus. However, with the level of sig-
nificance relaxed to P < 0.05, uncorrected (Fig. 9, bottom
row), the GCD map emphasizes the leading influence of
the SMA when conditioned on the stimulus. When condi-
tioned on the SMA, it produces a less structured map in
which there are fewer clearly leading anterior and lagging
posterior voxels.

DISCUSSION

In this study of a motor task, we demonstrated that two
multivariate methods with components sensitive to tempo-
ral differences—Granger causality and coherency (includ-
ing GCD and phase delay estimates, respectively)—
produced complementary results when applied to simu-
lated data. Whereas the GCD measure was more sensitive
to both coupling strength and latency, the two components
of coherency (coherence and phase) segregated the former
and the latter, respectively. We demonstrated that differen-
ces in the shape of the HRF could obscure the underlying
neural dynamics, and that such timing changes could be
potentially misinterpreted by both methods. Moreover, in
fMRI data the use of the GCD measure, while advanta-
geous in some ways, might also diminish the theoretical
advantages of Granger causality in distinguishing recipro-
cal or feedback connections; whereas the phase delay mea-
sure of coherency required more data to reach asymptotic
values. Reflecting their bivariate nature, both GCD and
coherency measures could be inaccurate when two regions
within a larger network were considered, unless further
steps—such as conditional analyses—were undertaken.
Despite these caveats, when applied to experimental
BOLD data, both GCD and coherency analyses were
shown to be sensitive to latency differences in motor areas
that remained even when time series data were condi-
tioned on the stimulus.

Theoretical Considerations and Simulations

Independently of the underlying neural connectivity,
Granger causality and coherency share a conceptual and
mathematical foundation. As discussed in the introduc-
tion, phase delay and Granger causality produce consistent
representations of the timing differences, provided the sys-
tem is linear. On the other hand, phase delay and Granger
causality will differ in the case with reciprocal/feedback
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connections, as has been shown both analytically [Granger,
1969] and, with LFP data, experimentally (e.g., [Brovelli et
al., 2004]). The simulations in this article with bidirectional
connections (Fig. 3c) demonstrated, however, that these
differences with respect to fMRI data are possibly more
apparent than real. Additionally, the need to use the GCD
subtraction measure to determine the dominant direction
of influence—i.e., to reduce artifactual unidirectional influ-
ence induced by the temporally-prolonged HRF and sub-
sampled BOLD response [Roebroeck et al, 2005]—
decreased the ability of the Granger technique to detect re-
ciprocal but lesser connections. As a result, in our hands
GCD and phase delay both reflected the direction of domi-
nant influence, consistent with the empirical results
obtained from their application to the fMRI data.

Are there other ways to distinguish these two methods?
They cannot be distinguished by a dependence, or lack
thereof, on HRF shape—both GCD and phase delay
depend on the form of the HRF. As shown in Figure 3b,
both methods incorrectly determined the direction of neu-
ral influence when an epiphenomenal difference in the
timing of the HRF between two areas was present. In this
case, the ability of coherency to distinguish coupling
strength from latency might provide a relative advantage.
As the coupling strength between two areas increases, the
phase delay remains constant for a given neural latency. It
only becomes more positive (i.e., more reflective of the
underlying neurophysiology) as the latency increases. The
fact that GCD reflects both coupling strength and latency
renders it more negative as coupling strength increases, a
change that could be misinterpreted if ascribed to latency
changes. In most experimental data, it will be unclear
whether the underlying coupling, latency, or both are
changing between ROI across two task conditions, and the
model suggests that coherency might better clarify these
relationships.

Another caveat that applies equally to both methods,
and consequently does not distinguish them at face value,
is the fact that both GCD and coherency are bivariate
measures that depend on analysis of time periods—
whether in a block, mixed, or event-related design—in
which consistent temporal relationships exist between
brain ROI. They are thus susceptible to common but
unconsidered influences, a problem long identified (e.g.,
[Perkel et al., 1967]). We have also demonstrated that con-
ditional GCD can reduce the influence of additional inputs
onto an area of interest. The conditional coherence shows
a similar pattern. Thus, the ability to apply conditional
Granger causality to fMRI data might be an advantage,
although a future implementation/validation of condi-
tional phase delay for BOLD data could certainly occur.
Additionally, recent articles in which a multivariate ver-
sion of Granger causality was used between specified
ROIs [Deshpande et al., 2009; Stilla et al., 2007] point to
the expansion of this technique.

Finally, the determination of statistical significance for
each method raises potentially distinguishing issues. For

coherency, significant values can be determined analyti-
cally by applying a Z-transform to the coherence, and
examining the root mean square error of the linear fit to
the unwrapped phase spectrum. For Granger causality, to
assess the significance of the GCD value, a common
approach is to consider bootstrapped significance values
that are determined by generating a number of null time
series. (Parametric Granger causality approaches, such as
those used by Rypma and colleagues [2006] and Bressler
and colleagues [2008], were not developed for the differ-
ence measure). The choice of these null time series can be
arbitrary. Ideally, a null time series should preserve as
much of the richness of the original time series as possible
(e.g., timing and amplitude information) while removing
the relationship of that time series to another. Roebroeck
and colleagues [2005] opted to generate null series by
switching the two halves of the original time series, which
is the approach we follow here; while Stilla et al. [2008]
transformed to frequency space, randomized phase, and
transformed back to the time domain. It remains unclear
what approach will ultimately be preferable; but it might
be considered a relative advantage of coherency to avoid
this complication.

fMRI Results

As predicted from the simulations, which suggested that
differences between GCD and phase delay might be mini-
mized in BOLD data, the GCD and phase delay measures
agreed quite well, both for individual subjects and for the
group. As noted in Figures 6 and 8, for instance, GCD and
phase delay tended to identify the same direction of influ-
ence for different areas. To the extent that the GCD maps
tended to show more suprathreshold voxels, they may
reflect the contribution of coupling strength to GCD val-
ues; and we noted that across both individual and group
data, the most robust findings—i.e., the most suprathres-
hold findings—were for coherence.

A weakness of this study (and possibly of others that
attempt to measure timing differences in fMRI data) is
that when the data were collected, no independent mea-
sure of individual HRFs was obtained, as in Handwerker
et al. [2004]. Of course, it is likely impossible to truly “iso-
late” HRFs, as even the simple tasks used by Handwerker
et al. [2004] undoubtedly give rise to interactions between
regions of (in their case) the motor system. As our simula-
tions have shown, HRFs of differing shapes (taken from
Handwerker and colleagues) can give rise to spurious
GCD and phase delay differences, potentially even oppo-
site to those of the underlying neurophysiology.

Nonetheless, even without these independent HRF data,
there are measures to reduce this possibility of error. One
is to examine areas for which independent timing informa-
tion is available, as we have done here. In the motor sys-
tem, for example, other studies in primates and humans
have shown a leading influence of SMA on posterior areas,
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as described above. This knowledge provides a hypothesis,
but obviously does not remove the possibility of a coinci-
dental match between hypothesis and HRF timing that
does not reflect neural activity. A second approach is to
examine group data. Assuming that there is no reliable
relationship in HRF shape between different brain areas
across subjects, consistent findings should reflect neural
rather than HRF differences. Finally, the application of in-
dependent modalities to measure timing (e.g.,, MEG and
EEG, possibly obtained simultaneously with fMRI data)
may be useful in establishing the accuracy of these fMRI-
based techniques.

In keeping with the first two approaches, we identified
directional interactions between areas that, based on previ-
ous work, we hypothesized to be present a priori. More
anterior areas such as the SMA exerted a leading influence
on more posterior areas, including the primary somatomo-
tor cortices, and this influence was reflected by either a pos-
itive or a negative voxel value depending on whether the
SMA or LM1 was chosen as the seed ROI. These relation-
ships appeared to hold true for both single subject and
group data, in keeping with neurophysiology results. It
remains to be seen whether studies similar to that of Hand-
werker et al. [2004] will find consistent relationships
between HRFs from different areas across subjects. [Hand-
werker et al.’s [2004] Figure 7 suggests that this possibility
might exist, in that the relative time-to-peak between differ-
ent areas (e.g., M1 and SEF) showed a significant correla-
tion across subjects]. If so, this study and other studies in
which group Granger causality or phase delay maps have
been produced will need to be re-evaluated in that light.

As for the exclusion of inputs from other areas—an abil-
ity that distinguishes both conditional Granger causality
and conditional coherence—the BOLD data confirmed that
such analyses can be fruitful. Conditioning the coherence
analysis for a right premotor seed on the stimulus does
not markedly decrease the observed interactions of this
seed with the rest of the brain; if anything, the coherence
appears more widespread, arguing (as suggested by the
simulations of Fig. 4b) that influences from the stimuli and
the SMA are both contributing to right premotor interac-
tions with more posterior areas. Conditioning on the SMA
supported the idea (as suggested by the resting connectiv-
ity) that the intrinsic right premotor connectivity with pos-
terior regions was modulated by the stimulus but more
directly linked to the SMA. The conditional GCD map was
consistent with this idea; conditioning on the stimulus or
the SMA removed much of the right premotor influence
on posterior areas, and the magnitude of this influence
appeared to be less when conditioning on the SMA. Of
course, conditional analyses cannot determine whether the
residual coherence or conditional Granger causality is not
due to yet another spurious connection produced by input
from an unexamined brain area, but the initial connectivity
analysis (and knowledge of the underlying neurophysiol-
ogy) can certainly serve as a guide for other potentially
relevant sources.

Summary

Given the above simulation and data findings, how
should a researcher best decide whether to apply Granger
causality or coherency techniques to his/her data? In our
hands, the methods gave converging results that reflected
both their analytical underpinnings and the nature of the
BOLD signal. Nonetheless, that GCD might reflect both
coupling strength and latency information should be taken
into account; if the goal is to find areas whose activity pre-
dicts the activity in other areas, and conditional analyses
are important, it may be most useful. On the other hand, if
separating coupling strength and latency differences is im-
portant, and provided that the amount of data is not limit-
ing, coherency may be more appropriate. In the data we
address here, we show that the two methods are more
similar than different. Both methods point to the existence
of a gradient of temporal influence within known motor
areas that is consistent with the known neurophysiology.

Of course, further work to compare and validate both
these and the expanding number of multivariate fMRI
techniques will be helpful in allowing researchers to best
choose the appropriate technique(s) for future studies;
future directions for this work are many. Given other
methodological issues that can potentially influence the
results, including techniques for noise reduction/prepro-
cessing, the possibility for the incorporation of nonlinear
terms in the Granger causality models, and methods for
generation of group maps, further studies will very likely
improve on our results. As mentioned above, comparisons
to related techniques such as partial directed coherence and
the directed transfer function [e.g., Eichler, 2006; Winter-
halder et al.,, 2005, Kaminski et al., 2001] have not been
addressed in this article, but are certainly worthy of investi-
gation and have recently been applied to fMRI data by
Stilla and colleagues [2007] and Deshpande and colleagues
[2009]. Similarly, Lauritzen and colleagues [Lauritzen et al.,
2008] have made efforts to improve the reliability of the
phase delay calculation. Other work could also profitably
explore how the use of the exploratory techniques we used
could guide the use of more directed, hypothesis-driven
methods in data analysis. Regardless, taking advantage of
the temporal information in fMRI data, whatever the form
of the analysis techniques, can only add to the utility of
fMRI in systems and cognitve neuroscience research.
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