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Abstract

B The onset of adolescence is associated with an increase in
the behavioral tendency to explore and seek novel experi-
ences. However, this exploration has rarely been quantified,
and its neural correlates during this period remain unclear.
Previously, activity within specific regions of the rostrolateral
PFC (rIPFC) in adults has been shown to correlate with the
tendency for exploration. Here we investigate a recently devel-
oped task to assess individual differences in strategic explo-
ration, defined as the degree to which the relative uncertainty
of rewards directs responding toward less well-evaluated
choices, in 62 girls aged 11-13 years from whom resting state

INTRODUCTION

The decision to continue to exploit a known source of
reward or to explore the environment for a potentially
greater one depends upon a balance of factors whose
weighting is subjective. For example, when confronted
with the choice between an activity whose reward is
known (such as eating ice cream) and a new one that
might—or might not—be even better (such as trying a
new athletic activity or smoking a cigarette for the first
time), some individuals may choose what they know,
whereas others may elect to try the unknown option.
More generally, the brain must weigh the advantages of
exploiting the action associated with a more certain out-
come against exploring an action whose payoff is more
unspecified. Notably, this type of exploration is strategic
rather than random: it is driven by the relative uncertain-
ty of options within the reward space, so that outcomes
maximize information that has most potential to improve
the status quo (Frank, Doll, Oas-Terpstra, & Moreno,
2009).

Adolescence is thought to be a time of exploration
(Forbes & Dahl, 2010; Kelley, Schochet, & Landry, 2004).
In conjunction with changes in sensation seeking, risk
tolerance, and other traits, such strategic exploration
may serve an evolutionary purpose by encouraging
adolescents to develop behaviors adaptive to function in
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fMRI data were obtained in a separate session. Behaviorally, this
task divided our participants into groups of explorers (z = 41)
and nonexplorers (7 = 21). When seed ROIs within the rIPFC
were used to interrogate resting state fMRI data, we identified
a lateralized connection between the rIPFC and posterior puta-
men/insula whose strength differentiated explorers from non-
explorers. On the basis of Granger causality analyses, the
preponderant direction of influence may proceed from posterior
to anterior. Together, these data provide initial evidence con-
cerning the neural basis of exploratory tendencies at the onset
of adolescence. Hl

new social and behavioral contexts (Kelley et al., 2004).
Importantly, the outcomes of exploratory behaviors are
likely to differ across adolescents: In some individuals,
for example, exploration may increase vulnerability
to risky behaviors by exposing them to previously un-
discovered detrimental activities perceived to be rewarding
(e.g., cigarette smoking), whereas in others, exploration
may increase resilience by ensuring that other more con-
structive rewards (e.g., athletic participation) are contin-
ually assessed. Moreover, the degree to which adolescents
strategically navigate the exploration—exploitation tradeoff
is likely variable across individuals. To our knowledge, this
latter question has yet to be rigorously evaluated.

Because of their potential importance in periadoles-
cence, differences in exploratory behaviors between indi-
viduals are likely to have a neural correlate. Rostrolateral
PFC (rlPFC) is thought to be important for evaluating
the efficacy of behavioral strategies and deciding whether
alternative strategies need to be pursued (Donoso, Collins,
& Koechlin, 2014). Recent studies have directly linked ex-
ploratory behavior to activity within the rIPFC, as measured
using fMRI (Badre, Doll, Long, & Frank, 2012; Boorman,
Behrens, Woolrich, & Rushworth, 2009; Daw, O'Doherty,
Dayan, Seymour, & Dolan, 2006), and our previous work
identified a specific region within the right rIPFC for which
activity varied with outcome uncertainty in participants
who demonstrated strategic exploratory behaviors, com-
pared with those without (Badre et al., 2012).

This finding holds particular interest for adolescents, in
whom the rIPFC has not yet fully developed (reviewed in

Journal of Cognitive Neuroscience 28:2, pp. 199-209
doi:10.1162/jocn_a_00896



Dumontheil, 2014). Gray matter density peaks in late
childhood and early adolescence before declining, and
the fractional anisotropy of white matter tracts, depend-
ing on brain region, does not reach its adult levels until
late adolescence or early adulthood (Lebel, Walker,
Leemans, Phillips, & Beaulieu, 2008). These structural
changes are accompanied by functional changes: in par-
adigms assessing the development of higher-order rea-
soning, for example, adolescents have been shown to
activate the same regions as adults, though with relative
differences in activity (both increases and decreases;
Dumontheil, 2014). In contrast, the relative maturity of
subcortical systems has led to theories that motivated
behaviors in adolescence may reflect reward sensitivity
within corticostriatal loops (Alexander, DeLong, & Strick,
1986), but in the context of limited cognitive control
(Gladwin, Figner, Crone, & Wiers, 2011; Galvan, 2010;
Somerville & Casey, 2010; Steinberg, 2008). Such theo-
ries suggest that exploratory behaviors at the onset of
adolescence may engage the rlPFC, but that individual
differences in exploration in this age range may reflect
disparities in the connectivity of this area with subcortical
and posterior brain regions.

In particular, hypothesized changes in connectivity are
likely to be found with regions important for strategic
exploration: those involved in the assessment of uncer-
tainty and the association of action plans with reward.
The insula, and the salience network more generally,
are known to be involved in the evaluation of uncer-
tainty, whether in the context of rewards or selected
actions, in both adults and adolescents (Smith, Steinberg,
& Chein, 2014; White, Engen, Sorensen, Overgaard, &
Shergill, 2014; Preuschoff, Quartz, & Bossaerts, 2008;
Huettel, 2006). Likewise, the striatum, including the
ventral striatum, has a well-established role in associating
rewards with motor plans, possibly via an anatomical
structure that progressively links the nucleus accumbens
with the dorsolateral striatum (Haber & Knutson, 2010;
Haber, Fudge, & McFarland, 2000). These previous re-
sults suggest that, in adolescents who engage in explor-
atory behaviors, the rlPFC may demonstrate behaviorally
relevant connectivity with uncertainty and reward-related
areas that include the insula and striatum. To our knowl-
edge, this possibility has yet to be addressed.

Given these open questions, here we use a previously
validated task to assess individual differences in explo-
ration within a group of early adolescent girls, ages 11—
13 years old, from whom resting state fMRI (rs-fMRI)
images were also obtained. We hypothesized that differ-
ences in strategic exploration should correlate with the
degree to which neural representations of uncertainty
and action are incorporated by the rIPFC and, specifically,
that participants with greater exploration should show
greater connectivity between the rIPFC and relevant
subcortical/posterior brain regions. Moreover, we pre-
dicted that, because a tendency toward exploration may
remain consistent across transient behavioral states,

200  Journal of Cognitive Neuroscience

changes in connectivity should be reflected in the resting
state. Finally, we hypothesized that this distinct neural
representation would argue for a behavioral dissociation
of strategic exploration from other factors relevant to
early adolescence, including risk aversion.

METHODS
Study Population

At a single time point within a larger study designed to
investigate longitudinal changes in adolescent girls, we
evaluated 76 healthy periadolescent girls who were with-
out a history of neurological or psychiatric disorders and
between 11 and 13 years old at the time of behavioral
testing. Sixty-six of these girls participated in MRI scan-
ning, of whom 62 completed the exploration—exploitation
task and formed the subject group. Twenty-eight partici-
pants were 11 years old, 20 were 12 years old, and 14 were
13 years old. Scores on the pubertal development scale
(Petersen, Crockett, Richards, & Boxer, 1988) ranged
from 1.2 to 3.8, with a mean of 2.5 = 0.7. We limited
our study to girls because pubertal status could be more
sharply defined and to avoid confounds resulting from
potentially differential effects of gender on exploration.
A parent or guardian gave written informed consent for
each participant in accordance with the Committee for
the Protection of Human Subjects at the University of
California, Berkeley. All participants also provided written
assent and were paid approximately $75 via gift card for
their participation.

Experimental Paradigm

Participants performed the exploration—exploitation task
outside the MRI scanner, and their behavior was cor-
related with rs-fMRI data. As in our previous work (Kayser,
Mitchell, Weinstein, & Frank, 2015; Badre et al., 2012;
Frank et al., 2009), on each trial participants observed a
clock that completed a revolution over 5 sec. Following
instructions that sometimes they would do better by
responding faster and sometimes by responding slower,
they stopped the clock with a key press during the
5 sec in an attempt to win points. Rewards were delivered
with a probability and magnitude that varied as a func-
tion of RT; together, these factors defined the reward
space for each condition. Importantly, participants were
not cued to the nature of the reward space beforehand,
requiring them to learn how reward probability and mag-
nitude varied with duration from trial onset. Over the
course of 50 trials, participants explored each of four con-
ditions, named in accordance with the change in expected
value (Probability X Magnitude) with increasing RT:
increasing expected value (IEV), decreasing expected value
(DEV), constant expected value (CEV), and constant
expected value-reversed (CEVR; see Figure 1). CEV and
CEVR are distinguished by contrasting reward frequency
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Figure 1. (A) Participants
viewed a clock face while A
deciding when to stop a marker
that made one clockwise
rotation over 5 sec. (B) The
probability of reward for each
of the four conditions across the
five second trial time. (C) The
magnitude of reward for each
of the four conditions across the
five second trial time. (D) The
expected value of the reward
(Probability X Magnitude) for
each of the four conditions.
Note that DEV and IEV strongly
differentiate expected value

but share monotonic declines
in reward probability.

Probability

and reward magnitude curves whose product gives rise
to overlapping expected value curves. Each participant
completed a total of 200 trials (4 conditions X 50 trials
per condition), with the order of the conditions counter-
balanced across participants. Although participants were
not directly cued to the nature of the reward space, the
clock face changed color between runs to indicate that
a different task condition was present.

A computational model was fit to each participant’s
behavioral data to estimate the magnitude of the explo-
ration parameter ¢ (see below for additional details on
the full model). Briefly, ¢ captures the degree to which
uncertainty in the reward space drives individual partici-
pants to explore. At the beginning of learning, partici-
pants have little knowledge as to whether faster or
slower responses will produce greater expected reward
(Figure 2). (Without limiting the generality of the results,
our previous studies have shown that RTs in the explora-
tion—exploitation task can be well predicted by assuming
that participants track the outcome statistics associated
with two general classes of responses, “fast” versus
“slow”; Badre et al., 2012; Frank et al., 2009.) After par-
ticipants experience more trials, the feedback about re-
wards allows them to reduce the uncertainty related to
their prior beliefs, manifest as a reduction in the variance
of the relevant belief distribution. The explore parameter
¢ indexes the degree to which participants guide explo-
ration toward the more uncertain of these (fast/slow) dis-
tributions to increase their understanding of the reward
space. In equation form,

Exploration (¢) = & * [0giow(f) — Ofast(?)]
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Figure 2. Intuition for the explore parameter. The strength of a
participant’s belief (y axis) about the probability of a better than
expected outcome (x axis) depends upon both the stage of learning
and the task condition (shown for DEV). In early stages (dashed lines)
of the DEV condition the participant has not yet determined whether
a faster (in gray) or slower (in black) response is more likely to be
rewarded, a state reflected in both a weaker belief strength (value on
the y axis) and greater uncertainty (a broader belief distribution). Later
in the task (solid lines), belief strength increases and the uncertainty
about reward likelihood decreases—that is, the participant may learn
that faster responses are more likely to yield reward (i.e., a positive
prediction error). The explore parameter indexes the degree to which
participants use the relative uncertainty between the faster and slower
distributions to explore the reward space (i.e., to reduce the variance in
the more uncertain distribution).
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where the magnitude of Exploration in milliseconds at
time ¢ is proportional to the difference between the stan-
dard deviations o of the fast and slow distributions at that
time, weighted by a scale factor ¢ derived from each partic-
ipant’s data. ¢ therefore represents how strongly each par-
ticipant uses the differences between the standard
deviations to drive RT. In keeping with other conceptuali-
zations of exploration (e.g., Daw et al., 2006), this compo-
nent of the model predicts that, in a given trial, participants
will increase RTs if the outcome statistics are more un-
certain for slow than fast responses, and vice versa.

Unlike the explore parameter &, which scales the dif-
ference in the uncertainties of the two (fast/slow) distri-
butions, the exploitation parameter p scales the degree to
which participants adjust their responses as a function of
the relative difference in the mean expected values:

Exploitation (t) =P * [Hsl()w(l) - ”fast(t)]

where the magnitude of Exploitation at time ¢ is pro-
portional to the difference between the mean rewards
p of the fast and slow distributions at that time, weighted
by a scale factor p fit to each participant’s data. This com-
ponent of the model predicts that participants will in-
crease RTs if the average reward is greater for slow
than fast responses, and vice versa—that is, it reflects
exploitation of prior learning. The exploitation factor
therefore complements factors associated with exploration,
in that reward depends on knowledge of the mean but
exploration depends on the variance.

More specifically, both exploitation of the RTs produc-
ing the highest rewards and exploration for even better
rewards are driven by errors of prediction in tracking
expected reward value V. On trial ¢, the expected reward
for each clock face is calculated as

V)=Vt —1)4+adt —1)

where a determines how rapidly V'is updated and 6 is the
reward prediction error. This V value represents the aver-
age expected value of rewards for each clock face; the
participant’s goal is to attempt to maximize her rewards
by selecting RTs that produce the largest number of pos-
itive deviations from this average. Because it is unreason-
able to assume that learners track a separate value for
each RT from 0 to 5000 msec, a simplifying assumption
is that the learners can track the values of responses that
are faster or slower than average, as noted above.

For consistency with prior reports, the full RT model
included additional contributions to responding that
were not a focus of the present experiment. The full
model estimates RT (RT) on trial ¢ as follows:

RT(¢) = K + NRT(t — 1) — go(¢) + no go(?)
+ p[“slow([) - Hfas[(t)] + V[RTbes[ - RTavg]
+ Explore(t)

where K is a free parameter capturing baseline response
speed, N reflects autocorrelation between the current
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and previous RT, go and no-go learning reflect a striatal
bias to speed (slow) responding as a function of positive
(negative) reward prediction errors, and v captures the
tendency to adapt RTs toward the single largest reward
experienced thus far. Their inclusion allows the model
to better fit overall RTs, but we have found that they
do not change the pattern of findings associated with
exploration or exploitation. For other details regarding
the primary continuous RT model, including alternative
models that provide poorer behavioral fits, please see
Frank et al. (2009). For each participant, the Simplex
method was used to estimate free parameters that mini-
mized the sum of the squared error between predicted
and observed RTs. Goodness of fit was assessed by a
sum of squared error term that reflected the difference
between participant behavior and model predictions.

MRI Image Acquisition

MRI scanning was conducted on a Siemens MAGNETOM
Trio 3T MR Scanner (Berlin, Germany) at the Henry H.
Wheeler, Jr., Brain Imaging Center at the University of
California, Berkeley. Anatomical images consisted of
160 slices acquired using a T1-weighted MPRAGE protocol
(repetition time = 2300 msec, echo time = 2.98 msec,
field of view = 256 mm, matrix size = 256 X 256, voxel
size = 1 mm?). During two 5-min rs-fMRI runs, functional
images consisting of 24 slices were acquired in interleaved
fashion with a gradient echo-planar imaging protocol
(repetition time = 1370 msec, echo time = 27 msec, field
ofview = 225 mm, matrix size = 96 X 96, voxel size = 2.3 X
2.3 X 3.5 mm).

fMRI Preprocessing

fMRI preprocessing was performed using both the AFNI
(afni.nimh.nih.gov) and FSL (www.fmrib.ox.ac.uk/fsl/)
software packages. Functional images were converted
to 4-D NIfTT format and corrected for slice-timing offsets.
Motion correction was carried out using the AFNI pro-
gram 3dvolreg, with the reference volume set to the
mean image of the first run in the series. Coregistration
with the anatomical scan was performed using the AFNI
program 3dAllineate, and anatomical images were nor-
malized to a standard volume (MNI_N27) using the FSL
program fnirt. The same normalization parameters were
later applied to native-space statistical maps to generate
group statistical maps.

Multivariate Analysis

Resting state data were smoothed by a 5-mm FWHM
Gaussian kernel before temporal bandpass filtering be-
tween 0.009 and 0.08 Hz to reduce the influence of
cardiac and respiratory artifact (Fox et al., 2005). Move-
ment parameters and the white matter and ventricular
time series, but not the global mean signal, were included
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as regressors of no interest. Because motion can severely
impact resting state data, data were then scrubbed (Power,
Barnes, Snyder, Schlaggar, & Petersen, 2012). On the
basis of our acquisition parameters, we removed frames
in which the summed variance of the temporal derivative
of the BOLD signal (DVARS) was greater than 0.03 and the
maximal motion displacement was greater than 2.5 mm.
Various ROIs within the rostral PFC (see Results and
Table 1 later in the article) were then selected, based on
previous work with this and related tasks (Badre et al.,
2012; Boorman et al., 2009; Daw et al., 2006). Each ROI
was defined by a set of MNI coordinates that formed the
center for a sphere with 5-mm radius. A time course de-
fined by averaging across voxels in this region was then cor-
related either with all other voxels in the brain (whole-brain
analyses) or with specific ROIs (ROI-ROI analyses), and
correlation coefficients were Fisher-transformed to allow
for the application of parametric statistical tests. (As for oth-
er rs-fMRI analyses, the so-called “univariate” contrasts
were not possible because of the lack of a contrasting
baseline condition and the absence of discrete task
epochs.) For whole-brain analyses, images were normal-
ized to the MNI template before the application of group
level statistics. Map-wise significance (p < .05, corrected
for multiple comparisons) was determined by applying a
cluster-size correction derived from the AFNI programs
3dFWHMx and 3dClustSim to data initially thresholded
at a value of p < .005, uncorrected. Because of our hypoth-
eses about changes in frontostriatal connectivity, the vol-
ume of a frontal mask (AAL regions 3-32 and 71-76;
Tzourio-Mazoyer et al., 2002) was used to calculate the
appropriate cluster size correction (equal to 16 contiguous
voxels).

To evaluate the temporal influence of these regions in
ROI-ROI analyses, we used bivariate Granger causality.
This technique determines whether the time series in
one voxel or region helps to predict upcoming time
points in a second time series; if so, that voxel or region
is said to be Granger causal for the second. Using custom
Matlab-based analysis scripts (www.mathworks.com)

developed in our previous work, we restricted our anal-
ysis to linear autoregressive models (see Kayser, Sun, &
D’Esposito, 2009, for full details).

RESULTS

Sixty-two early adolescent girls completed both the
exploration—exploitation task and resting state MRI scans.
Before examining exploration explicitly, we first ensured
that participants performed the task well. Out of 12,400
total trials (50 trials per condition X 4 conditions X
62 participants), there were 51 no-responses (0.41%),
indicating excellent task engagement. More importantly,
participants’ performance in the different task conditions
could be readily distinguished via their mean RTs over
the latter half of trials (Figure 3A). In a two-way ANOVA
including the factor of Task condition with Participants
as a random effect, a strongly significant effect of Task
condition could be seen, F(3, 61) = 4.59, p = .004. In
post hoc ¢ tests, this finding was driven by RTs within
the CEVR condition, which were significantly longer than
in the CEV (¢(61) = 2.97, p = .004), DEV (#(61) = 3.08,
p = .003), and IEV (2(61) = 2.79, p = .007) conditions.
Furthermore, only in the CEVR condition did participants
demonstrate a significant increase in RT from the first
half of trials to the second (#(61) = 2.02, p = .048).
Importantly, neither age nor scores on the pubertal devel-
opment scale (Petersen et al., 1988) influenced perfor-
mance on any of the individual task conditions (age: all
p values > .22; PDS: all p values > .08).

Notably, this pattern of performance demonstrates
a form of risk aversion or probability-magnitude bias:
Because both the CEV and CEVR conditions have con-
stant expected value across the entire duration of the
clock, the significant difference between them indicates a
differential sensitivity to reward frequency (Figure 1)—that
is, participants were more averse to low-frequency re-
wards despite their larger magnitudes. Results for the
IEV condition (Figure 3A) were in keeping with this idea.
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Figure 3. (A) Shown are the average RTs across all 62 participants for each of the four conditions, smoothed by a 10-trial weighted average.
As evident in the plots, participant behavior strongly differentiated the conditions, F(3, 61) = 4.59, p = .004. (B) Model predictions for the average RT
across trials for all 62 participants, demonstrating good agreement with the behavioral data.
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Specifically, participants who maximized expected value
would be anticipated to slow responding as they learned
about the reward space for IEV, whereas participants
who preferred more frequent but smaller rewards over
proportionally larger, less frequent rewards would be antic-
ipated to respond rapidly. Consistent with the latter possi-
bility, no increase in RT was seen between the first and
second halves of trials for the IEV condition (#(61) =
—0.96, p = .34), and no difference in RT was evident
between the two conditions, IEV and DEV, that most
strongly differentiated expected value (#(61) = —0.10,
p = .9. Rather, as noted above, participants responded
later only when reward frequency, not expected value,
increased with time (the CEVR condition). This result
stands in contrast with our previous work in adults (Kayser
et al., 2015; Badre et al., 2012; Frank et al., 2009), who
strongly tracked expected value.

To ensure that this pattern of responding reflected
strategic, rather than random, evaluation of the reward
space, we compared trial-by-trial changes in RT across
participants with model-derived estimates of participants’
relative uncertainty about the outcomes of faster versus
slower responses (Figure 4). Within our group of 62 early
adolescent participants, 41 evinced a positive explore
parameter (“explorers”), and 21 did not (“nonexplorers”).
If explorers used uncertainty about the reward space to

RT Swing (Z score)
o

Relative Uncertainty (Z score)

Figure 4. The correlation between the change in RT from one trial
to the next (“RT swing”) and the difference in the standard deviations of
the fast and slow belief distributions (“Relative uncertainty”) for all
sessions with a positive explore parameter across participants. To
facilitate comparison, both RT swing and relative uncertainty values
have been converted to Z scores. As predicted, greater relative
uncertainty on a given trial correlated with greater changes in RT from
that trial to the next (mean regression coefficient = 0.28, p < .001
for the # test evaluating whether these coefficients are different from
zero across participants). This positive correlation provides important
support for the notion that experience-derived relative uncertainty, rather
than undirected responding, drives exploration of the reward space.
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drive responding, then greater relative uncertainty about
slower responses (Figure 4: positive values, x axis), for
example, should be correlated with slowing of RT on
the next trial (Figure 4: positive swing in RT, y axis). In
contrast, random evaluation of the reward space would
lead to no relationship. Consistent with participants’ stra-
tegic exploration of the reward space, a strongly signifi-
cant positive correlation was seen between relative
uncertainty and RT swing in the explorers (mean regres-
sion coefficient across the group = 0.28, significantly dif-
ferent from zero; p < .001).

Importantly, differences in exploration between par-
ticipants could not be explained by other behavioral
and demographic variables. RT data for the CEV, CEVR,
DEV, and IEV conditions were not significantly different
between explorers and nonexplorers (all p values >
.062). Risk aversion, defined here as the difference
between RTs in the CEVR and CEV conditions to mini-
mize RT-related learning effects, was also no different
between explorers and nonexplorers (2(24) = —1.63,
p = .11, corrected for unequal variances). Additionally,
the number of explorers did not vary by age: 21, 12, and
8 participants for ages 11, 12, and 13 years old, respectively
(of 28, 20, and 14 total) had nonzero explore parameters
X(@2) = 0.62, p = .73); and explorers showed no difference
in scores on the pubertal development scale when com-
pared with nonexplorers (¢(37) = —0.58, p = .57, cor-
rected for unequal variances). Finally, there were no
significant differences in model fit between explorers and
nonexplorers (#(57) = 1.32, p = .19, allowing for unequal
variances) or across age groups (F(2, 59) = 0.89, p = 42),
and no correlation was found between model fit and score
on the pubertal development scale (r = 0.13, p = .33).

To assess the neural correlates of exploration in resting
state data, we started with the single region in right rlPFC
(MNI coordinates [24 46 20]) that differentiated explorers
from nonexplorers in our previous work in adults (Badre
et al., 2012). We hypothesized that connectivity with
this region would likewise distinguish explorers from
nonexplorers in this early adolescent sample. Because
other studies have implicated not only right, but also left,
rIPFC in exploratory behaviors, we also calculated resting
state connectivity between a corresponding (mirror image)
region in left rIPFC (MNI coordinates [—24 46 20]). As
shown in Figure 5, the seed region in right rIPFC was more
strongly connected to the right posterior putamen/insula
([32 —10 8]; cluster size 19 voxels, peak ¢ value = 3.20)
in explorers compared with nonexplorers, whereas the
seed region in left rIPFC was more strongly connected
to the left posterior putamen/insula ([—38 —14 —06];
cluster size 39 voxels, peak ¢ value = 3.63) in explorers
compared with nonexplorers (both results p < .05, cor-
rected). In subsequent ROI-ROI analyses, the strengths
of this rIPFC—putamen/insula connectivity across individ-
uals did not correlate with either age (ps > .21 or score
on the pubertal development scale (ps > .45, and the sta-
tistical difference in connectivity between explorers and
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Figure 5. Adolescents who
displayed exploratory behavior
demonstrated greater lateralized
resting state connectivity
between seed regions in rlPFC
(top, in green) and posterior
striatumyinsula (lower, in red)
than nonexplorers. Two clusters
were identified across the
group comparison: for the seed
centered at [24 46 20], a 19-voxel
cluster at MNI coordinates

[32 —10 8] with peak ¢ score
3.20 (left), and for the seed
centered at [—24 46 20],

a 39-voxel cluster at MNI
coordinates [—38 —14 —0]
with peak ¢ score 3.63 (both
results p < .05, corrected).

The adjacent dot plots
demonstrate that these
differences were not driven

by outliers. As determined by
Granger causality, the direction
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nonexplorers remained strongly significant when the vari-
ance explained by age and pubertal development scale was
first removed by linear regression before the differences
were calculated (ROI-ROI analyses for right-sided
regions: #(60) = 3.2, p = .002; left-sided regions: #(60) =
3.5, p = .0009). Moreover, when participants were divided
into exploiters (77 = 45) and nonexploiters (z = 17) and
whole-brain connectivity maps for the same rIlPFC seed
regions were evaluated, a significant difference between
exploiters and nonexploiters was only identified for con-
nectivity between one contralateral region and the right
rIPFC seed. However, this contralateral region ([MNI coor-
dinates [—29 55 28]) was closely adjacent to the area of the
left rIPFC seed (MNI coordinates [—24 46 20]), encom-
passed voxels that were potentially outside the MNI tem-
plate brain (data not shown), and was not confirmed by
related ROI-ROI analyses (see below).

To ensure that these findings were not tied to a partic-
ular rIPFC seed region, we replicated these results for
strategic exploration by evaluating connectivity differ-
ences between explorers and nonexplorers in an addi-
tional ROI-ROI analysis (Table 1) using the identified
posterior putamen/insula regions and other functionally
defined rIPFC seeds derived from previous work that
investigated exploratory behaviors (Badre et al., 2012;
Boorman et al., 2009; Daw et al., 2006). Similarly, to ensure
that this finding was specific to exploration, we repeated
these ROI-ROI analyses, but instead used the exploitation
parameter to divide individuals into exploiters and non-
exploiters. The number of true exploration-related posi-
tives (Table 1, shaded areas) was significantly greater

than that expected by chance (p = .00002, binomial
theorem), whereas neither exploration- nor exploitation-
related false positives occurred more than expected by
chance (p = .19 and p = .88, respectively). Additionally,
we found no significant, exploitation-related connectivity
between the seed regions themselves for any of the seeds
(data not shown). Finally, to evaluate whether this con-
nectivity was directional, we applied Granger causality to
the original finding. For both right- and left-sided con-
nections (Figure 5, blue arrows), a significant lateralized
Granger causal influence was found from the posterior
striatum/insula to the rIPFC (right putamen/insula to right
rlPFC: p = .025, left putamen/insula to left rIPFC: p = .023).

DISCUSSION

Here we demonstrate that the tendency for uncertainty-
guided exploration shows significant individual variation
around the onset of adolescence and that explorers show
greater connectivity between the rIPFC and the putamen/
insula than do nonexplorers. Importantly, these differ-
ences do not correlate with a measure of risk aversion,
pubertal status, or age, suggesting that exploration itself
represents an independent and differentiable component
of cognitive function. Moreover, the direction of this con-
nectivity proceeds from posterior to anterior (“bottom—
up” rather than “top—down”) as assessed by Granger
causality, arguing that activity within these regions may
reflect input to, rather than output from, rlPFC—a find-
ing potentially consistent with previous theories that re-
sponses in subcortical and posterior structures mature
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before those in PFC (Gladwin et al., 2011; Galvan, 2010;
Somerville & Casey, 2010; Steinberg, 2008).

Despite the importance that individual differences in
strategic exploratory behaviors are thought to play in
adolescence, they have not previously been studied
quantitatively. In contrast with the current task, a pre-
vious study evaluated noncontingent exploration, in
which a model of individual choice variability in a multi-
ple one-armed bandit task was dependent upon previous
selections, but not upon previous rewards (Christakou
et al., 2013). Interestingly, this particular form of choice
sensitivity was both explained by age effects and cor-
related with activity within premotor cortex—perhaps
consistent with individual variability in motor planning.
Other work has focused on potentially related behaviors
such as risk tolerance and self-regulation, also concep-
tualized as the presence of increased appetitive drive in
the context of weak or immature control processes dur-
ing adolescence. The current results demonstrate that
exploration represents an additional complexity; here it
was independent of the degree to which participants

Table 1. Additional ROI-ROI Analyses

Exploration (¢) Exploitation (p)

ROI R Str/Ins L Str/Ins R Str/Ins L Str/Ins
24 46 20 (a) * ~
—24 46 20 (a) g
22 54 28 (a) & ~
—22 54 28 (a) &
36 56 —8 (a)
—36 56 —8 (a) g
2757 6 (b) &
—27 48 4 (b)
36 54 0 () %
—34 56 =8 (¢) m

To ensure that differences in the magnitude of resting state correlations
were not tied to an idiosyncratic rIPFC ROI, additional rlPFC ROIs
derived from previous work—(a) Badre et al. (2012), (b) Daw et al.
(2006), and (c) Boorman et al. (2009)—were tested to determine
whether connectivity with the regions shown in Figure 3 distinguished
explorers from nonexplorers. Moreover, to ensure that results were
specific to exploration (g), we tested whether these same regions could
distinguish exploiters from nonexploiters (p). Where bilateral coordi-
nates were not available, the x coordinate was reflected about the
midline to generate a contralateral ROIL Shaded cells within the table
indicate where significant results would be expected if the findings dis-
played in Figure 5 generalized to other regions in lateralized fashion but
remained specific to exploration. The number of true exploration-related
positives (shaded areas) was significantly greater than that expected by
chance (p = .00002, binomial theorem), whereas neither exploration-
nor exploitation-related false positives occurred more than expected
by chance (p = .19 and p = .88, respectively). For the first two ROIs
(coordinates [24 46 20] and [—24 46 20)), results recapitulate the find-
ings of Figure 5 with respect to the exploration parameter. Asterisks indi-
cate p < .05; tildes indicate p < .10; blank cells specify nonsignificant
values.
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pursued large rewards without consideration for their
frequency. Moreover, in post hoc analyses, it was inde-
pendent of sensation seeking, as defined by scores on
the sensation seeking scale for children (SSSC; Russo
et al., 1991). Specifically, there were no differences be-
tween explorers and nonexplorers in the total SSSC score
(11.3 vs. 12.3, 1(45) = —0.93, p = .306), nor for any of the
SSSC subscales (all ps > .21). Finally, in exploratory indi-
viduals, this exploration was strategic, in that it was driv-
en by relative uncertainty in the reward space, rather
than by chance responding. Such exploration may there-
fore reflect the participation of rlPFC-based corticostriatal
circuits necessary for adaptive responding when partici-
pants are confronted by uncertain rewards.

Notably, these periadolescent participants as a whole
also displayed a probability-magnitude bias in which
they chose highly probable rewards over proportionally
greater rewards of lower probability. This finding is
consistent with some reports that adolescents at this
time point are relatively risk averse (Tymula, Rosenberg
Belmaker, Ruderman, Glimcher, & Levy, 2013), perhaps
more so for losses than for the gains studied here (Wolf,
Wright, Kilford, Dolan, & Blakemore, 2013). Alternatively,
this bias may partly result from a potential inability of
these participants to effectively integrate probability
and magnitude to generate an estimate of expected
value. This cognitive explanation may align with other
evidence that the capacity for abstraction may develop
at older ages than the ones studied here (Dumontheil,
2014), but it alone would not explain why participants
emphasized probability over magnitude in the choices
that they did make. Moreover, this bias is unlikely to
reflect a problem with either learning in general or explo-
ration in particular, as Figures 3 and 4 demonstrate an
understanding of the task structure and relative uncer-
tainty, respectively.

Because these strategic exploratory behaviors are not
yet well evaluated in adolescence, their behavioral and
neurophysiological understanding leans heavily on the
extant adult work. Across different tasks in adults, includ-
ing both one-armed bandit tasks and the current one,
regions within rIPFC have consistently been shown to re-
spond to exploration of the reward space (Badre et al.,
2012; Boorman et al., 2009; Daw et al., 2006). As we have
discussed elsewhere (Badre et al., 2012), these similari-
ties are present though the tasks themselves can have
considerable differences, including in the quality of ex-
ploration itself. In a task in which participants selected
between multiple slot machines on each trial (Daw
et al., 2006), for example, they behaved as though only
the last trial of the task was informative (i.e., the event
history was limited), indicating that all unchosen options
from the previous trial were equally uncertain on the next
one. In contrast, here participants showed clear effects of
learning across 50 trials, as reflected in the contribution
of previous understanding of the reward space (incorpo-
rated into estimates of uncertainty) to trial-by-trial explo-
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ration (Figure 4). Despite differences in the computation
of the uncertainty that guided exploration in previous
tasks, rIPFC activity nonetheless correlated with explor-
atory behaviors in these data.

A related question concerns the engagement of rIPFC
in periadolescent participants at all. Importantly, al-
though exploration has not been well studied in this
age group, other tasks that engage rIPFC in adults have
been shown to likewise engage this region in adoles-
cence (Dumontheil, 2014). For example, studies of rela-
tional integration, the capacity to evaluate relationships
between multiple cognitive representations, demonstrate
that rIPFC activity in such adolescents correlates with
the processing of abstract representations, though this
activity becomes more specific for higher-order repre-
sentations in later adolescence (Wendelken, O’Hare,
Whitaker, Ferrer, & Bunge, 2011; Dumontheil, Houlton,
Christoff, & Blakemore, 2010). Moreover, our robustness
checks (Table 1) indicate that this finding is not limited to
one specific rIPFC region. Thus, although rIPFC activity near
the onset of adolescence may not demonstrate the speci-
ficity of adult activity—likely consistent with studies that
show development of both cortical thickness (O’Donnell,
Noseworthy, Levine, & Dennis, 2005) and myelination
(Miller et al., 2012) within rIPFC into adulthood—such
activity has nonetheless been found consistently in this
age group.

Given that our current connectivity results generalize
to multiple exploration-associated rIPFC regions but re-
main specific to exploration (as opposed to exploitation),
the meaning of a behaviorally defined, lateralized dif-
ference in connectivity with the insula and putamen is
intriguing. The insula is thought to be important for
evaluating uncertainty (Smith et al., 2014; White et al.,
2014; Preuschoff et al., 2008; Huettel, 2006) and for inte-
grating interoception with cognition (Craig, 2009), sug-
gesting the hypothesis that exploration may be more
strongly coupled to interoceptive awareness in explorers.
The location of the insula activation in the current study
is likely to be critical; our current activation is more ven-
tral and posterior, where social-emotional and sensori-
motor representations may be present (Kurth, Zilles,
Fox, Laird, & Eickhoff, 2010). Such representations could
conceivably provide important context for exploratory
decisions by allowing for moment-by-moment analysis
of uncertainty, motivation, and motor state (Craig,
2009). Of course, the insula may also participate in other,
distinct cognitive processes, and other brain regions may
likewise participate in the processing of uncertainty at
different times; more broadly, the problems of such re-
verse inference are well known (e.g., Poldrack, 2006;
but see Hutzler, 2014). In addition to more directly eval-
uating these possibilities, future work might therefore
test how aversion to uncertainty affects exploratory be-
havior both in this task and more generally, especially
when losses are also possible (Payzan-LeNestour &
Bossaerts, 2011).

Similarly, connections with the more posterior puta-
men may be related to the activation of reward-relevant
motor plans. Importantly, however, this connectivity
would not be directly tied to actual motor performance
in this study, given that our imaging data were obtained
in the resting state. Because exploration in more etholog-
ical settings might be expected to depend on multiple
factors, including the current physiological state, the
stronger connection between these regions in explorers
could instead reflect a history of greater use or greater
sensitivity of this pathway in those individuals.

Along those lines, Granger causality analyses suggest
that activity within the insula and putamen may more
strongly influence rIPFC than the reverse. This finding
is interesting in the context of theories arguing that
reward-related behaviors in adolescence reflect a mis-
match between early maturation of brain regions im-
portant for incentive salience and relative immaturity of
those important for cognitive control (Gladwin et al.,
2011; Galvan, 2010; Somerville & Casey, 2010; Steinberg,
2008). On the basis of our results, activity within these
posterior regions may be more likely to provide an in-
put to rIPFC than to indicate the results of top—down
influence from this region. Thus, it is conceivable that
rIPFC-based exploration in early adolescence is more
strongly influenced by immediate consideration of reward
rather than prospective evaluation of different paths of
action (Donoso et al., 2014).

On a methodological note, the use of resting state data
to investigate these questions was based on the hypoth-
esis that exploration represents a somewhat stable cogni-
tive phenotype and should therefore be reflected even in
the absence of task. However, the use of resting state
data has previously raised concerns in adolescent studies,
including the recent widely discussed possibility that
many resting state studies in adolescence may be influ-
enced by subject motion (Power et al., 2012). Fortunately,
participants in this study were quite still overall—the
largest single linear displacement was less than one voxel
size (2.3 mm) in 56 of 62 participants—and resting state
data were scrubbed (Power et al., 2012) before analysis to
reduce the influence of motion. Importantly, neither the
mean (p = .44) nor the maximum (p = .31) motion dis-
placement distinguished explorers from nonexplorers,
and there was no significant correlation between either
the mean or maximal motion displacement and the
strength of connectivity between the rIPFC and posterior
putamen/insula across participants (all p values > .16).
Thus, a movement confound is unlikely to explain our
results.

In summary, our data demonstrate that individual dif-
ferences in strategic exploration have a behavioral and
neural correlate at the onset of adolescence. Given these
results, our understanding of so-called risky behaviors
and adolescent vulnerability to psychiatric disorders
may potentially be understood in light of exploration.
Of course, additional factors are likely at play: for example,
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future work might consider the influence of prospection
(the ability to envision the future). More broadly, we
hypothesize that puberty marks the beginning of an im-
portant inflection point in the developmental trajectory
in which brain development may proceed in either a
more resilient or more vulnerable direction (Crone &
Dahl, 2012). Because this study is limited by the lack of
longitudinal developmental data, future work to evaluate
changes in strategic exploration over time would be crit-
ical, especially given the fact that other task outcomes,
such as the probability-magnitude bias, appear to differ
between our participants and adults. Furthermore, task-
related fMRI results would provide important additional
constraints about whether and how the rIPFC contributes
to task performance. Nonetheless, this baseline work will
hopefully provide predictors when longitudinal data
points are obtained, thereby permitting within-subject
evaluation of developmental changes in exploration
across pubertal maturation, as well as correlation with
real-world behaviors. Ultimately, understanding the neural
systems and hormonal influences that underlie indi-
vidual differences in decision-making at the onset of
adolescence may have great relevance to understand-
ing potentially pathological states in older adolescents
and young adults, as well as advancing the possibility
of periadolescence as a window of opportunity for early
intervention.

Acknowledgments

We thank the participants and their parents for their partici-
pation. This work was supported by the Institute for Trans-
lational Neuroscience (W81XWH-11-2-0145 to A.S.K.), the
Telemedicine and Advanced Technology Research Center
(W81XWH-10-1-0231 and W81XWH-11-1-0596 to A. S. K.), the
National Center for Responsible Gaming/NCRG (A. S. K.), the
Wheeler Center for the Neurobiology of Addiction (A. S. K.),
and funds from the state of California (A. S. K.).

Reprint requests should be sent to Andrew S. Kayser, Department
of Neurology, University of California, San Francisco, Sandler
Neurosciences Building, 675 Nelson Rising Lane, San Francisco,
CA 94143, or via e-mail: Andrew.Kayser@ucsf.edu.

REFERENCES

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel
organization of functionally segregated circuits linking basal
ganglia and cortex. Annual Review of Neuroscience, 9,
357-381.

Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012).
Rostrolateral prefrontal cortex and individual differences in
uncertainty-driven exploration. Neuron, 73, 595-607.

Boorman, E. D., Behrens, T. E., Woolrich, M. W., & Rushworth,
M. F. (2009). How green is the grass on the other side?
Frontopolar cortex and the evidence in favor of alternative
courses of action. Neuron, 62, 733-743.

Christakou, A., Gershman, S. J., Niv, Y., Simmons, A., Brammer,
M., & Rubia, K. (2013). Neural and psychological maturation
of decision-making in adolescence and young adulthood.
Journal of Cognitive Neuroscience, 25, 1807-1823.

208  Journal of Cognitive Neuroscience

Craig, A. D. (2009). How do you feel—Now? The anterior insula
and human awareness. Nature Reviews Neuroscience, 10,
59-70.

Crone, E. A, & Dahl, R. E. (2012). Understanding adolescence
as a period of social-affective engagement and goal flexibility.
Nature Reviews Neuroscience, 13, 636—650.

Daw, N. D., O’'Doherty, J. P., Dayan, P., Seymour, B., & Dolan,
R. J. (2006). Cortical substrates for exploratory decisions in
humans. Nature, 441, 876-879.

Donoso, M., Collins, A. G., & Koechlin, E. (2014). Human
cognition. Foundations of human reasoning in the prefrontal
cortex. Science, 344, 1481-1486.

Dumontheil, I. (2014). Development of abstract thinking during
childhood and adolescence: The role of rostrolateral
prefrontal cortex. Development of Cognitive Neuroscience,
10C, 57-76.

Dumontheil, I., Houlton, R., Christoff, K., & Blakemore, S. J.
(2010). Development of relational reasoning during
adolescence. Developmental Science, 13, F15-F24.

Forbes, E. E., & Dahl, R. E. (2010). Pubertal development and
behavior: Hormonal activation of social and motivational
tendencies. Brain and Cognition, 72, 66-72.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen,
D. C., & Raichle, M. E. (2005). The human brain is intrinsically
organized into dynamic, anticorrelated functional networks.
Proceedings of the National Academy of Sciences, U.S.A,
102, 9673-9678.

Frank, M. J., Doll, B. B, Oas-Terpstra, J., & Moreno, F. (2009).
Prefrontal and striatal dopaminergic genes predict individual
differences in exploration and exploitation. Nature
Neuroscience, 12, 1062-1068.

Galvan, A. (2010). Adolescent development of the reward
system. Frontiers in Human Neuroscience, 4, 6.

Gladwin, T. E., Figner, B., Crone, E. A., & Wiers, R. W. (2011).
Addiction, adolescence, and the integration of control and
motivation. Developmental Cognitive Neuroscience, 1,
364-376.

Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000).
Striatonigrostriatal pathways in primates form an ascending
spiral from the shell to the dorsolateral striatum. Journal of
Neuroscience, 20, 2369-2382.

Haber, S. N., & Knutson, B. (2010). The reward circuit:
Linking primate anatomy and human imaging.
Neuropsychopharmacology, 35, 4-26.

Huettel, S. A. (2006). Behavioral, but not reward, risk
modulates activation of prefrontal, parietal, and insular
cortices. Cognitive, Affective & Bebavioral Neuroscience,
6, 141-151.

Hutzler, F. (2014). Reverse inference is not a fallacy per se:
Cognitive processes can be inferred from functional
imaging data. Neuroimage, 84, 1061-1069.

Kayser, A. S., Mitchell, J. M., Weinstein, D., & Frank, M. J.
(2015). Dopamine, locus of control, and the exploration—
exploitation tradeoff. Neuropsychopharmacology, 40,
454-462.

Kayser, A. S., Sun, F. T., & D’Esposito, M. (2009). A comparison
of Granger causality and coherency in fMRI-based analysis
of the motor system. Human Brain Mapping, 30,
3475-3494.

Kelley, A. E., Schochet, T., & Landry, C. F. (2004). Risk
taking and novelty seeking in adolescence: Introduction
to part 1. Annals of the New York Academy of Sciences,
1021, 27-32.

Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B.
(2010). A link between the systems: Functional
differentiation and integration within the human insula
revealed by meta-analysis. Brain Structure & Function, 214,
519-534.

Volume 28, Number 2



Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C.
(2008). Microstructural maturation of the human brain from
childhood to adulthood. Neuroimage, 40, 1044-1055.

Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze,
W. B., McArthur, M. J., et al. (2012). Prolonged myelination in
human neocortical evolution. Proceedings of the National
Academy of Sciences, U.S.A., 109, 16480-16485.

O’Donnell, S., Noseworthy, M. D., Levine, B., & Dennis, M. (2005).
Cortical thickness of the frontopolar area in typically developing
children and adolescents. Neuroimage, 24, 948-954.

Payzan-LeNestour, E., & Bossaerts, P. (2011). Risk, unexpected
uncertainty, and estimation uncertainty: Bayesian learning in
unstable settings. PLoS Computational Biology, 7, e1001048.

Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988).

A self-report measure of pubertal status: Reliability, validity,
and initial norms. Journal of Youth and Adolescence, 17,
117-133.

Poldrack, R. A. (2006). Can cognitive processes be inferred from
neuroimaging data? Trends in Cognitive Sciences, 10, 59-63.

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., &
Petersen, S. E. (2012). Spurious but systematic correlations
in functional connectivity MRI networks arise from subject
motion. Neuroimage, 59, 2142-2154.

Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human
insula activation reflects risk prediction errors as well as
risk. Journal of Neuroscience, 28, 2745-2752.

Russo, M. F., Lahey, B. B., Christ, M. A., Frick, P. J., McBurnett,
K., Walker, J. L., et al. (1991). Preliminary development of
a sensation seeking scale for children. Personality and
Individual Differences, 12, 399-405.

Smith, A. R., Steinberg, L., & Chein, J. (2014). The role of the
anterior insula in adolescent decision making. Developmental
Neuroscience, 36, 196-2009.

Somerville, L. H., & Casey, B. J. (2010). Developmental
neurobiology of cognitive control and motivational systems.
Current Opinion in Neurobiology, 20, 236-241.

Steinberg, L. (2008). A social neuroscience perspective on
adolescent risk-taking. Developmental Review, 28, 78-106.
Tymula, A., Rosenberg Belmaker, L. A., Ruderman, L., Glimcher,
P. W., & Levy, L. (2013). Like cognitive function, decision

making across the life span shows profound age-related
changes. Proceedings of the National Academy of Sciences,
USA., 110, 17143-17148.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello,
F., Etard, O., Delcroix, N., et al. (2002). Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage, 15, 273-289.

Wendelken, C., O'Hare, E. D., Whitaker, K. J., Ferrer, E., &
Bunge, S. A. (2011). Increased functional selectivity over
development in rostrolateral prefrontal cortex. Journal of
Neuroscience, 31, 17260-17268.

White, T. P., Engen, N. H., Sorensen, S., Overgaard, M., &
Shergill, S. S. (2014). Uncertainty and confidence from the
triple-network perspective: Voxel-based meta-analyses. Brain
and Cognition, 85, 191-200.

Wolf, L. K., Wright, N. D., Kilford, E. J., Dolan, R. J., &
Blakemore, S. J. (2013). Developmental changes in effects of
risk and valence on adolescent decision-making. Cognitive
Development, 28, 290-299.

Kayser et al. 209



