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The intraparietal sulcus (IPS) has been implicated in numerous functions that range from representation of visual stimuli to
action planning, but its role in abstract decision-making has been unclear, in part because low-level functions often act as
confounds. Here, we address this problem using a task that dissociates abstract decision-making from sensory salience, atten-
tional control, motor planning, and motor output. Functional MRI data were collected from healthy female and male human
subjects while they performed a policy abstraction task requiring use of a more abstract (second-order) rule to select between
two less abstract (first-order) rules that informed the motor response. By identifying IPS subdivisions with preferential con-
nectivity to prefrontal regions that are differentially responsive to task abstraction, we found that a caudal IPS (cIPS) subre-
gion with strongest connectivity to the pre-premotor cortex was preferentially active for second-order cues, whereas a rostral
IPS subregion (rIPS) with strongest connectivity to the dorsal premotor cortex was active during attentional control over
first-order cues. These effects for abstraction were seen in addition to cIPS activity that was specific to sensory salience, and
rIPS activity that was specific to motor output. Notably, topographic responses to the second-order cue were detected along
the caudal-rostral axis of IPS, mirroring the broader organization seen in lateral prefrontal cortex. Together, these data dem-
onstrate that subregions within IPS exhibit activity responsive to policy abstraction, and they suggest that IPS may be organ-
ized into frontoparietal subnetworks that support hierarchical cognitive control.
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Significance Statement

Abstract decision-making allows us to flexibly adapt our behavior to new contexts. Although much previous work has focused on
the role of lateral prefrontal cortex in such decisions, the contributions of parietal cortex have been relatively understudied. Here,
we demonstrate that spatially segregated subregions of human IPS with strong functional connections to lateral prefrontal cortex
demonstrate activity selective for abstract decisions. This activity can be distinguished from responses resulting from cognitive proc-
esses related to sensory salience, attentional control, motor planning, and movement. Together, these findings indicate that different
task demands are reflected in the topography of IPS, and they explicitly reveal a role in abstract decision-making.

Introduction
The intraparietal sulcus (IPS) is critical for a remarkably diverse
array of functions in humans, including but not limited to per-
ception of visual motion (Konen and Kastner, 2008), representa-
tion of visual features (Xu, 2009), action planning (Grèzes and
Decety, 2001), action execution (Culham and Valyear, 2006),
and perceptual decision-making (Kayser et al., 2010a). The
engagement of IPS in these varied processes reflects its key role
in mediating stimulus-response relationships within the fronto-
parietal network, a set of brain regions responsible for perceptual
and motor control. In support of these findings, lesions to IPS
produce impairments in cognitive functions such as spatial atten-
tion (Gillebert et al., 2011), visual perception (Murphy et al.,
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2016), and reaching (Karnath and Perenin, 2005; Medina et al.,
2020).

In line with this evidence that IPS plays a key role in
linking stimuli with appropriate actions, it has been sug-
gested that parietal cortex may contribute to decision-mak-
ing through participation in networks distinguished by
their level of policy abstraction (Choi et al., 2018). Policy
abstraction (Badre, 2008; Botvinick, 2008) describes a hier-
archical set of superordinate and subordinate action rules
that permit behavior to adapt flexibly to novel environ-
ments. For example, based on the context of one’s visit to a
new restaurant, whether ordering takeout or eating on site
(superordinate rule), one can then either identify the cash-
ier counter for payment or the restaurant host for seating,
respectively (subordinate rules).

Previous studies of policy abstraction have largely focused
on the frontal lobe (Badre and D’Esposito, 2007; Badre et al.,
2010; but see D’Mello et al., 2020). This literature has iden-
tified specific regions along the rostral/caudal axis of the
lateral frontal cortex that respond hierarchically to increas-
ingly abstract decisions (Nee and D’Esposito, 2016), includ-
ing the dorsal premotor cortex (PMd), pre-premotor cortex
(pre-PMd), inferior frontal sulcus, and rostral PFC (Badre
et al., 2010; Kayser and D’Esposito, 2013). Yet, like lateral
frontal cortex, regions within the IPS are polymodal areas
(Mesulam, 1998) with complex cognitive functions (Xu,
2018). Because lateral frontal cortex and the IPS are not
only highly connected to each other but also project to and
receive projections from many of the same brain regions,
understanding their respective contributions to complex cog-
nition is critical to understanding circuit function (Goldman-
Rakic, 1988). However, in part because of the multiple, poten-
tially confounding perceptual and motor processes instantiated
within IPS, it is not currently known whether IPS also contains
localized higher-order representations responsive to policy
abstraction.

To address this possibility, here, we capitalize on the fact that
the brain is functionally segregated into large-scale intrinsic net-
works that are highly reproducible across subjects (Moussa et al.,
2012) and parcellate the brain into discrete regions based on
shared activity dynamics, even in the resting state (Schaefer et al.,
2018). Moreover, within IPS, it has been demonstrated that
multiple functional subregions constitute a complex, topo-
graphic organization (Silver and Kastner, 2009). If subregions
in IPS participate in higher-order abstract decision-making,
they are likely to be differentially connected to lateral frontal
regions sensitive to distinct levels of policy abstraction. In addi-
tion, activity related to abstraction within IPS should be differ-
entiable from other known functions of IPS. To this end, we
created a task that systematically dissociates known sensory and
motor control functions from goal-oriented, abstract functions.
Specifically, we use an adaptation of the random-dot kineto-
gram task (Britten et al., 1992; Kayser et al., 2010a) to manipu-
late the salience of sensory stimuli, attentional control, the
timing of motor responses, and the level of abstraction.

We hypothesized that distinct subregions within IPS would ex-
hibit hierarchically ordered responses to policy abstraction that
are consistent with intrinsically connected lateral frontal regions.
Moreover, these responses should not be readily explained by
other known functions of IPS. We find support for both hypothe-
ses, and our results suggest that hierarchical cognitive control net-
works that include IPS may reflect an organizing principle that
informs the multifaceted functions of parietal cortex.

Materials and Methods
Thirteen women and 10 men provided written informed consent to par-
ticipate, in accordance with the Committee for the Protection of Human
Subjects at the University of California, Berkeley. Eight women and three
men (11 subjects, age 18–45 years) completed all study procedures and
were included in analyses. Of the 12 excluded subjects, seven did not
complete prescan training, one developed an MRI contraindication after
consent, one showed a persistent response bias (i.e., indicating blue on
.50% of color training runs), two demonstrated excessive head motion
(.3 mm) during MRI scanning, and one subject fell asleep during scan-
ning. Subjects had normal neural anatomy as assessed by a neurologist
(A.K.), were right-handed, and had normal or corrected-to-normal
vision. Before the first scan session, subjects were trained for a minimum
of five 1.5 h training sessions to minimize learning effects during MRI
scanning. Subjects then performed the task inside the fMRI scanner for
five 1.5 h scan sessions, each consisting of six runs of 22 trials, for a total
of 660 trials across the 5 d of testing. Each session occurred between 1
and 7 d after the previous session. The average number of days between
the first and last scan session across all subjects was 13.4, with a median
of 10d.

Experimental design and statistical analyses
Task design. Subjects performed an abstract decision-making task

(Fig. 1A) in which each trial consisted of three sequentially presented vis-
ual stimulus displays (color, motion, and shape stimuli, respectively)
shown in randomized, counterbalanced order (Fig. 1B), followed by an
explicit response period. The sensory salience of each visual stimulus
was varied by manipulating its coherence level (Fig. 1C). To address the
role of policy abstraction (Botvinick, 2008; Badre and D’Esposito, 2009),
the task was structured so that the coherence discrimination for one of
the three stimuli determined the relevance of the other two stimuli,
which in turn were associated with a pair of stimulus-response mappings
(Fig. 1D). Specifically, one of the three stimuli in each trial served as the
more abstract contextual cue (second-order rule) necessary for selecting
which of the other two stimuli determined the motor response (first-
order rule). The third remaining stimulus in each trial was therefore
unnecessary for the response and could be ignored (irrelevant cue). To
dissociate specific visual aspects of the sensory stimulus from its role in
the task, the second-order, first-order, and irrelevant cues were equally
represented by the color, motion, and shape stimuli across all runs.
Moreover, as noted above, the position of each of the three cues (second
order, first order, and irrelevant) was randomized and counterbalanced
across trials to avoid confounds that might potentially be associated with
specific positions. For example, the uncertainty of the motor response
and novelty responses related to the identity of the specific stimulus
(color, motion, or shape) would be maximal for the first position. Thus,
all runs were pseudorandomized to ensure that position, coherence, and
cue type were equally distributed across trials (Fig. 1D), under the
assumption that doing so reduces the likelihood that features particular
to any one trial sequence could drive behavioral and neural effects aver-
aged across all sequences.

The same second-order rule was active for an entire run but varied
across runs. For example, a full 8.5 min color run would always use the
color stimulus as the second-order cue, but the next run might use the
shape stimulus as the second-order cue. Moreover, specific second-order
rule mappings, that is, from specific second-order feature to first-order
rule (Fig. 1C), were consistent within a subject but counterbalanced
across subjects. For example, one subject’s second-order rule for a color
run might map blue to the shape stimulus, whereas a different subject’s
color rule might map blue to the motion stimulus. Likewise, the first-
order rule mappings from stimulus feature to response were consistent
across all trials and runs within a subject but counterbalanced across
subjects. For example, the first-order rule might map circles to the left
button and triangles to the right button for one subject but the opposite
for another (Fig. 1D).

At the beginning of each run, an instruction screen indicated which
of the second-order rules was active for the run and therefore which of
the stimuli was serving as the second-order cue (Fig. 1A). On each trial,
subjects were then required to perform two perceptual discriminations,
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a discrimination for the second-order cue and a discrimination for the
relevant first-order cue, while the irrelevant cue could be ignored. For
example, during a color run (Fig. 1A), the color stimulus might be dis-
played first in position 1. After judging whether there were more gray
dots or blue dots present, the subject would know whether to use the
shape rule or the motion rule to determine the button press response. In
this case, if the color stimulus in this trial contained more blue dots, the
shape stimulus would serve as the first-order cue. Thus, if position 2
contained the motion stimulus, the subject would disregard it. The shape
stimulus in position 3 would then be the relevant first-order cue, during
which the subject would make the appropriate perceptual discrimination
to determine whether there were more circles or more triangles present.
Each of the sequentially displayed cues within a trial was separated by an
interstimulus interval of 1, 3, or 5 s, pseudorandomly presented from a
uniform distribution. To reduce working memory load, small symbols
on the left and right sides of the screen outside the circular stimulus dis-
play aperture reminded subjects of the first-order rule mapping from
stimulus to button press for each of the stimuli (Fig. 1A).

To dissociate motor execution from the decision itself, subjects were
required to withhold the appropriate button press until prompted to
respond at the end of each trial. Once the response cue appeared, sub-
jects were given 2 s to press the appropriate button as quickly and as
accurately as possible. The left button was always pressed using the right
index finger, and the right button was always pressed with the right mid-
dle finger. During the intertrial interval (3, 5, or 7 s duration, pseudoran-
domly drawn from a uniform distribution), subjects viewed a reminder
screen about the currently active abstract rule to further reduce working
memory demand (Fig. 1A). At the end of each 8.5 min run, subjects
were shown their overall accuracy for the preceding run; no other feed-
back was provided. The task was programmed in MATLAB using
Psychophysics Toolbox version 3 (http://psychtoolbox.org/), adapted
from previous code (Kayser et al., 2010b; Shankar and Kayser, 2017).

Behavioral training. In training sessions 1–3, each subject completed
a minimum of six behavioral runs per session to learn to perceptually

discriminate between competing features of a single stimulus type (i.e.,
two runs limited to discrimination of blue or gray colored dots, two runs
limited to discrimination of upward or downward moving dots, and two
runs limited to discrimination of 2-D circles or triangles), counterbal-
anced across sessions. Coherence for the motion stimulus was defined
as the percentage of the total number of dots moving coherently (Kim
and Shadlen, 1999; Heekeren et al., 2006; Kayser et al., 2010a). For
shape and color stimuli, coherence for the target feature was defined
as the difference between the number of target features and the num-
ber of distractor features present, divided by their sum. For example,
if 60 blue dots and 40 gray dots were shown as the color stimulus, the
color coherence would equal (60–40)/(60 1 40) = 20%, and the cor-
rect response would be blue. Lower coherence produced lower sen-
sory salience and therefore a perceptually more ambiguous display
for all three stimulus types.

Perceptual discriminations during training were preset to a range of
seven coherences, that is, 0, 2, 4, 8, 16, 32, and 64% for the motion stimu-
lus (Kayser et al., 2010b); 0, 4, 7, 11, 18, 36, and 68% for the color stimu-
lus; and 0, 7, 13% 20, 33, 67, and 87% for shape. The training coherence
values captured the full range of behavioral performance from chance
(50%) performance to 100% accuracy, as fit by a psychometric curve

derived from the logistic function [f ðxÞ ¼ a
11e�bx

], where a defines the

maximal accuracy at a given coherence level, and b defines the slope of
the curve.

In training sessions 1 and 2, subjects were provided with auditory
feedback at the end of each trial. A correct trial was communicated with
a low-frequency tone of 0.15 s duration, whereas an incorrect trial was
communicated with a corresponding high-frequency tone. When sub-
jects made the transition to training on the full task in session 3,
trial-by-trial feedback was discontinued. At the end of training ses-
sion 3, individual high and low coherence values (one high and
one low value) were selected for each subject based on their inter-
polated behavioral performance at 95% and 75% accuracy, respec-
tively, to ensure comparable performance for every subject. These

Figure 1. A, Task design. At the start of each run, an instruction screen notified subjects of the active second-order rule. Each trial then consisted of three sequentially presented stimuli
accompanied by first-order rule reminders that were displayed as symbols on the left and right of the screen (to indicate mappings to the left and right buttons, respectively). Following the
presentation of the third stimulus, subjects made a button press response, after which a reminder of the active second-order rule was displayed during the intertrial interval. On this example
trial, the second-order cue, the color stimulus, indicates that the relevant first-order cue is the shape stimulus, and the irrelevant cue is the motion stimulus. The correct response is a left button
press, corresponding to the circle feature. B, Stimuli were presented equally often in positions 1, 2, and 3 across all trials. Each position permutation was pseudorandomly presented. Three of
the possible six permutations are shown here. C, Stimuli were presented at either high coherence (high sensory salience) or low coherence (low sensory salience) equally often across all trials.
D, Hierarchical structure of the policy abstraction task for the example trial. Across all runs, color, motion, and shape stimuli served equally often as the second-order cue.
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individualized high and low coherence values were used in training
sessions 4–5, in which subjects performed the full task.

To acclimate subjects to assessing the second-order cue, the first half
of training session four used a version of the full task in which the sec-
ond-order cue was always presented in position 1. In the second half of
training session 4, the second-order cue appeared equally as likely in
position 1, 2, or 3, consistent with the task that subjects performed in the
MRI scanner. Auditory feedback on each trial was again provided for
full task training during session 4 before being discontinued for session
5. Training session 5 used the identical task completed during fMRI
scanning sessions. All subjects reached stable performance of at least
75% accuracy before continuing with scanning sessions.

MRI parameters. MRI scanning took place at the Henry H. Wheeler
Jr. Brain Imaging Center at the University of California, Berkeley using a
Siemens TIM/Trio 3 T MRI and a 12-channel receive-only head coil.
Functional images were acquired with a single-shot gradient echoplanar
imaging protocol in contiguous descending order (32 slices, TR = 1.8 s,
TE = 23 ms, FOV 225 mm, matrix size 70 � 70 � 32, voxel size 3.2 �
3.2 � 3 mm). Anatomical images were acquired with a T1-weighted
MP-RAGE imaging protocol (160 slices, TR = 2.3 s, TE = 2.98ms, FOV
256 mm, matrix size 256 � 256, voxel size 1 � 1 � 1 mm). Head move-
ment was restricted using foam padding. A projector (Avotec SV-6011)
displayed the task on a screen inside the scanner bore. Once a mirror
was placed over the head coil, the distance from the subject’s eye to the
screen was 29 cm, and the presented images subtended a visual angle of
7.5°. An MRI-compatible fiber-optic four-button response device (inline
model HH-1 � 4-L, Cambridge Research Systems) was used for subject
responses.

fMRI preprocessing . fMRI data were preprocessed using a version of
the open-source Analysis of Functional NeuroImages (AFNI) pipeline
written by S.L.C. (https://github.com/savannahcookson/AFNI-Pipeline),
which was customized to manage multisession data. This pipeline sup-
ports preprocessing and first-level analysis of data based on the afni_-
proc.py function available in the AFNI software package (Cox, 1996).
DICOM (Digital Imaging and Communications in Medicine) images
were converted to NIFTI format using MRIcron DCM2NII (https://
people.cas.sc.edu/rorden/mricron/dcm2nii.html); they were then aligned
to a T1 anatomic image acquired on the same day as the functional
images. Data were despiked, corrected for slice timing, registered to the
second functional image of the first run acquired that day, resampled to
3 � 3 � 3 mm space, and then aligned to the skull-stripped anatomic
image warped to the standard Montreal Neuroscience Institute (MNI)
atlas (ICBM152; https://www.mcgill.ca/bic/). Data were smoothed with a
6 mm FWHM Gaussian kernel and scaled to have a voxelwise mean of
100 by dividing the time series of each voxel by its mean signal and mul-
tiplying by 100. Individual volumes that contained .10% outlier voxels
were censored from further analysis. Data for each subject were then
concatenated across all scanning days for first-level analysis.

Univariate analysis
All univariate analyses were completed with AFNI software through a
combination of the above preprocessing pipeline and additional custom
scripts. The AFNI function 3dDeconvolve was used to create a general
linear model that evaluated nine different conditions as separate regres-
sors. Six regressors evaluated correct trials only during the following
stimulus presentation conditions: (1) the second-order cue at high co-
herence, (2) the second-order cue at low coherence, (3) the first-order
cue at high coherence, (4) the first-order cue at low coherence, (5) the
irrelevant cue at high coherence, and (6) the irrelevant cue at low coher-
ence. Three additional regressors captured trials and/or events of lesser
interest: (7) all three stimulus displays on error trials, (8) the instruction
screen displaying the active second-order rule, and (9) the button press
response. Because regressors 1–6 were limited to correct trials only, the
number of trials contributing to these regressors was less than the 660
total trials each subject completed. For each subject, 5426 19 correct tri-
als (mean6 SD), on average, were included within these six regressors.

Each regressor was created from the convolution of a gamma proba-
bility density function that peaked at 6 s with a condition-specific vector
of stimulus onsets and durations (2 s for stimulus presentation, 6 s for

the instruction screen, and a stick function for the button press
response). Resultant estimated b coefficients for each subject were
mapped to the MNI template for use in group-level analyses. Whole-
brain voxelwise contrasts were next created for the second-order cue ver-
sus first-order cue (Second-order vs First-order), first-order cue versus
irrelevant cue (First-order vs Irrelevant), all high coherence cues versus
all low coherence cues (High vs Low), and the time point of button press
versus time points during task stimulus presentation (Button press vs
Visual stimuli). Stimulus type (color, motion, or shape) for each cue was
intentionally collapsed to capture parietal activity that is not specific to
visual features. To remove areas that deactivated during task perform-
ance, each contrast was masked by the positive main effect of task, cre-
ated by contrasting all conditions versus baseline at a loose threshold
(p, 0.05, uncorrected).

Regions of interest selection. All regions of interest (ROIs) were
selected from a 1000-area parcellation (Schaefer et al., 2018)
derived from a well-established seven-network resting-state fMRI
(rs-fMRI) analysis (Yeo et al., 2011), which was obtained at 1 mm
resolution and resampled to 3 � 3 � 3 mm task space (https://
github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal). The Schaefer et al. (2018)
parcel that included MNI coordinates (�30,�10, 68) in dorsal premotor
cortex identified by Badre and D’Esposito (2007) was selected as the
PMd ROI [parcel #144, MNI centroid (�28, �12, 60)]. Likewise, the
parcel that includedMNI coordinates [�38, 10, 34] in pre-premotor cor-
tex from Badre and D’Esposito (2007) was selected as the pre-PMd ROI
[parcel #355, centroid (�40, 10, 32)].

Resting-state functional connectivity analysis. Independent rs-fMRI
data from 100 human subjects studied in the Human Connectome
Project (HCP; healthy young adult Fix_extended rs-fMRI) was then
used to identify parietal parcels with maximal functional connectivity to
pre-PMd and PMd parcels, respectively. These data from 100 HCP sub-
jects were selected for minimal motion and were further processed using
the standard ICA-FIX pipeline (https://www.humanconnectome.org/
software/hcp-mr-pipelines), followed by regression of the global average
brain signal and a bandpass filter (0.009–0.08Hz) to remove physiologi-
cal artifacts. Parcel-level time series averages were obtained by fitting
HCP resting-state data to the Schaefer et al. (2018) 1000-area parcella-
tion using MATLAB and AFNI. Pearson’s correlations between all par-
cels were z-scored using Fisher’s R-to-Z transform via the AFNI
3dNetCorr command.

The resultant z-scored correlation matrices were averaged across all 100
HCP subjects and used to identify the parietal parcel with the highest posi-
tive correlation to the pre-PMd parcel, where parietal cortex was defined
using cytoarchitectonic macro labels from the standard AFNI atlas
CA_ML_18_MNI. The same method was repeated for the PMd parcel.
This analysis yielded a caudal subregion of the left IPS with greatest connec-
tivity to pre-PMd [MNI centroid coordinates (�32, �70, 50), parcel #321],
hereafter referred to as caudal IPS (cIPS), and a more rostral IPS subregion
with greatest connectivity to PMd [MNI centroid coordinates (�38, �42,
56), parcel #211] hereafter referred to as rostral IPS (rIPS).

To determine whether these parietal ROIs had differential connectivity
to pre-PMd compared with PMd, vectors for each HCP subject’s z-scored
correlations of cIPS/rIPS with pre-PMd and cIPS/rIPS with PMd were first
standardized. For each parietal ROI, we then implemented a paired t test
comparing the correlations to pre-PMd and PMd using a Bonferroni-cor-
rected significance threshold of p = 0.025. Effect size for this test and all
paired two-sample t tests in this study was determined using the standard

equation for Cohen’s d, (d ¼ d9ffiffiffiffiffiffiffiffiffiffi
1� r

p ), where d9 ¼ x1 � x2
s

, r is the correla-

tion between samples, and the pooled SD s is defined as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 1 ðn2 � 1Þs22

n1 1 n2

s
:

We next evaluated whether the choice of regions whose connectivity
differentiated pre-PMd and PMd was critical to our results by further
identifying parietal regions maximally connected to both pre-PMd and
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PMd. This approach allowed us to compare task activity in parietal
regions that have selective connectivity to one particular region in the
frontal hierarchy with activity in parietal regions that have more general-
ized connectivity to multiple frontal regions. To account for overall dif-
ferences in connection strength for the two regions, we separately
standardized the vectors of z-scored correlations between pre-PMd/PMd
and all other brain parcellations by subtracting the mean and dividing
by the SD for each. We next took the item-by-item product of those two
correlation vectors. The products were ranked, and the five parietal par-
cels with the highest positive products were selected [IPSa with MNI
centroid coordinates (�42, �40, 42), IPSb (�52,�34, 44), IPSc (�32,
�48, 46), IPSd (�48,�42, 50), and IPSe (�38, �52, 58); for further ROI
analysis, see Extended data Table 4-1]. We evaluated whether these IPS
subregions with more nonspecific connectivity had frontal connectivity
profiles distinct from the selectively connected rIPS and cIPS using a
one-way ANOVA and a post hoc Tukey HSD multiple comparisons test.
A vector of the correlation of each parietal ROI with pre-PMd was sub-
tracted from the correlation with PMd for all 100 HCP subjects, and
these absolute differences were treated as seven groups for the statistical
tests implemented in MATLAB.

For multiple reasons, we focused on areas within the left hemisphere.
As is true for many cognitive neuroscience studies, only right-handed
individuals were included, and our task explicitly involves hierarchical
processing of action rules that result in a motor output from the domi-
nant (right) hand. As a consequence, responses are likely to rely on fron-
toparietal action representations in the left hemisphere. In addition,
because subjects might use language rules to facilitate hierarchical
responses, there may be differences between hemispheres linked to lan-
guage-based strategies, or even to subvocal rehearsal. Consistent with
these ideas, previous reports investigating similar abstract tasks have
found predominantly left-sided activations (Badre and D’Esposito, 2007;
Nee and Brown, 2012, 2013; Jeon and Friederici, 2013; Jeon et al., 2014;
Nee and D’Esposito, 2016).

fMRI-based ROI analysis. After selecting the parcel used for each
ROI, an ROI mask was created by resampling from the Schaefer et al.
(2018) 1000-area map. The mask was then applied to each subject’s uni-
variate whole-brain contrast dataset (Second-order vs First-order, First-
order vs Irrelevant, High vs Low, and Button press vs Visual stimuli).
We then took the mean b value from all voxels within the selected par-
cel for each subject and performed ANOVAs and t tests at the group
level using custom MATLAB scripts. All ANOVA tests assessed effect

size with partial h-squared, h 2p ¼ SSeffect
SSeffect 1 SSerror

: Effect sizes for all

one-sample b contrast ROI results were found using the standard

Cohen’s d equation, d ¼ x1 �m

s
:

Graded activity for second-order abstraction in IPS. To investigate
whether selectivity for second-order abstraction varied systematically
across the multiple subregions of IPS defined above, we conducted an
exploratory analysis. To do so, we initially computed the Pearson corre-
lation coefficient between the mean b value obtained from the Second-
order versus First-order contrast and the y coordinate (MNI) of the
centroid for the seven IPS ROIs previously identified by connectivity
methods, IPSa, IPSb, IPSc, IPSd, IPSe, rIPS, and cIPS. We repeated
this analysis for the First-order versus Irrelevant contrast, then cal-
culated the significance of the difference between the Second-order
versus First-order correlation and the First-order versus Irrelevant
correlation.

Conjunction maps. To determine whether our ROI-based results
were specific to the connectivity-defined regions evaluated above, we
also performed an exploratory conjunction analysis. As for the ROI anal-
yses, whole-brain maps of interest (see below) were first loosely masked
by the positive main effect of task (p, 0.05, uncorrected) to remove any
voxels that explicitly deactivated in response to task performance. An
anatomic mask of parietal cortex, again defined by the cytoarchitectonic
macro labels from the standard AFNI atlas, CA_ML_18_MNI, was then
applied to limit the search to parietal voxels.

To assess the same conjunction of properties seen in the ROI analyses,
we evaluated contrasts that identified voxels responding differentially to

Second-order versus First-order cues, Relevant versus Irrelevant stimuli,
High versus Low coherence, and/or Button press versus Other task stim-
uli, as indicated. Pertinent maps were defined by loose thresholds (p ,
0.05 uncorrected), after which conjunction analyses were performed
across properties matched to the ROI-based findings. For example, to
identify cIPS-like regions, we evaluated BOLD activity that, like cIPS,
differentiates second-order from first-order cues and high from low co-
herence but does not distinguish relevant from irrelevant stimuli or the
button press from other task stimuli (see below, Results). Similarly, we
evaluated BOLD activity that, like rIPS, differentiates relevant from irrel-
evant stimuli and button press from other task stimuli but does not
distinguish second-order from first-order cues or high from low coher-
ence. Lastly, the resulting maps were overlapped with the resting-state
connectivity-defined parcels (i.e., cIPS and rIPS) to determine conjoint
responses.

Sample size. This study was designed to maximize within-subject
power so that multiple cognitive processes could be differentiated in
within-individual contrasts rather than between-groups comparisons.
More broadly, this approach borrows from more recently developed
techniques that acquire large numbers of scans in a small number of
subjects (Gordon et al., 2017). Based on our estimates, recruitment of
at least 10 subjects provides 80% power to identify large effect sizes
(Cohen’s d = 1.0) at an a value of 0.05. Including subject attrition
noted above, the actual number of subjects that ultimately survived
all quality checks was 11.

Results
Behavior
Subjects completed a task in which factors including the order
(level) of abstraction, type of visual stimulus, sensory salience,
and cue position were manipulated (Fig. 1). As expected, subject
performance improved with increased sensory salience; accuracy
was higher for pertinent high coherence compared with low co-
herence cues except when the cue was irrelevant (second-order
cue at high coherence vs second-order cue at low coherence,
t(10) = 7.95, p = 1.24 � 10�5, d = 3.45; first-order cue at high
coherence vs first-order cue at low coherence, t(10) = 13.69,
p = 8.36 � 10�8, d = 5.90; irrelevant cue at high coherence
vs irrelevant cue at low coherence, t(10) = 0.23, p = 0.82, n.s.;
d = 0.10; Fig. 2). This result confirmed that subjects attended to
appropriate task-relevant stimuli and used coherence in their
decisions. To ensure that subjects evaluated the abstract relation-
ship of the second-order cue rather than merely the visual stimu-
lus feature that composed it, we compared accuracy for trials in
which motion, color, and shape stimuli, respectively, served as
the second-order cue. No differences were seen (F(2,30) = 0.16,
p = 0.85, n.s., h 2p = 0.01), suggesting that abstract decisions
were not dependent on the low-level visual feature. As all
cue types were presented equally often in positions 1, 2, and

Figure 2. Group-level behavioral effect of coherence on trial accuracy, collapsed across
cue types, for the second-order, first-order, and irrelevant cues. Error bars indicate between-
subject SEM. Asterisks indicate p, 0.05; n.s. indicates non-significant.
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3 across all trials to minimize potential expectation effects, we next
confirmed that the position of the second-order cue did not affect
accuracy (F(2,30) = 1.53, p = 0.23, n.s., h 2p = 0.09). Furthermore, ac-
curacy did not differ significantly among trials for the six corre-
sponding permutations of position for the second-order, first-order,
and irrelevant cues (F(5,60) = 0.81, p = 0.55, n.s., h 2p = 0.06).
Consistent with data for accuracy, response time did not differ
across visual stimulus type or position of the second-order cue, and
there were no differences in response time between high and low
coherence cues, suggesting that decisions were made in advance of
the response cue.

Univariate functional imaging maps
A whole-brain, voxelwise contrast of all task conditions versus
baseline yielded a characteristic frontoparietal network consist-
ent with prior studies of hierarchical cognitive control in policy
abstraction tasks (Fig. 3). To more directly analyze target regions
implicated in policy abstraction, we next directed our attention
to lateral prefrontal regions previously implicated in abstract de-
cision-making, including regions sensitive to second-order (pre-
PMd) and first-order (PMd) rules, to identify their functionally
connected regions in parietal cortex.

Connectivity
Using resting-state connectivity derived from Human Connectome
Project data, we identified parietal regions that were maximally
functionally connected to lateral frontal regions implicated in sec-
ond-order (pre-PMd) and first-order (PMd) abstract decisions.
Using the two lateral frontal parcels containing pre-PMd and
PMd, respectively, as seed regions (Schaefer et al., 2018; see above,
Materials and Methods), we identified the parietal parcels with the
highest positive raw z-scored correlation for pre-PMd (parcel 321
in cIPS) and PMd (parcel 211 in rIPS; Fig. 3). These two IPS sub-
regions showed selective connectivity to their corresponding
regions in frontal cortex, with strongly differential connectivity to
either pre-PMd or PMd (rIPS, t(99) = �20.57, p = 1.61 � 10�37,
d = �2.06; cIPS, t(99) = 14.80, p = 7.79 � 10�27, d = 1.48). These
results support hypotheses that regions within parietal and frontal
cortex may participate in distinct functional networks for different
orders of abstract tasks (Choi et al., 2018).

Functional imaging ROI analysis
Using these four ROIs—pre-PMd, PMd, cIPS and rIPS—we per-
formed a three-way ANOVA that included factors of ROI, order

of abstraction (second-order or first-order), and stimulus coher-
ence (high or low), with subjects treated as a random effect. There
was a strongly significant interaction between ROI and abstraction
(F(1.78,17.81) = 32.27, p = 1.99� 10�6, h 2p = 0.76) and a significant
interaction between ROI and coherence (F(1,48,14.76) = 7.21, p =
0.01, h 2p = 0.42), though no three-way interaction between ROI,
abstraction, and coherence (h 2p = 0.04).

The interaction between ROI and abstraction was driven by
differences in the responses of pre-PMd and cIPS to second-
order stimuli. Pre-PMd had significantly greater activity for the
second-order versus the first-order cue (Second-order vs First-
order, t(10) = 5.45, p = 2.81 � 10�4, d = 1.64), as did cIPS (t(10) =
6.29, p = 9.07 � 10�5, d = 1.90), but neither PMd (t(10) = �1.00,
p = 0.339, d = �0.30) nor rIPS (t(10) = 0.71, p = 0.493, d = 0.21)
showed such changes (Fig. 4A, top). In addition, these differen-
ces could not be explained by general attentional mechanisms.
When responses to relevant (i.e., putatively attended) first-order
cues and irrelevant (putatively unattended) cues were compared
in these regions, we observed a dissociation with respect to the
results for order (Fig. 4A, bottom). Specifically, PMd and rIPS
strongly differentiated relevant from irrelevant first-order cues
(First-order vs Irrelevant, PMd, t(10) = 3.26, p = 0.009, d = 0.98;
rIPS, t(10) = 5.77, p = 1.80� 10�4, d = 1.74), but pre-PMd (t(10) =
�0.15, p = 0.880, n.s., d = �0.05) and cIPS (t(10) = �0.48, p =
0.641, n.s., d = �0.14) did not. These results suggest that cIPS
and rIPS might serve complementary roles in policy abstrac-
tion. Moreover, along with previous reports that the bottom
of the hierarchy does not respond differentially to second-
order policy abstraction (Badre and D’Esposito, 2007; Badre
and Nee, 2018), these data demonstrate that PMd and rIPS are
dissociably responsive to attentional manipulations for first-
order stimuli.

In the above comparisons, functionally connected frontal and
parietal regions responded equivalently to abstraction-related
task features. Conversely, when we examined the significant
interaction between coherence and ROI, we found that the effect
of coherence was more strongly represented in parietal than in
frontal regions, specifically in cIPS (Fig. 4B, top). When high and
low coherence stimuli were compared, collapsed across order of
abstraction, cIPS responded more strongly to high coherence
(High vs Low, t(10) = 2.93, p = 0.015, d = 0.88). Notably, as indi-
cated by the absence of a three-way interaction between ROI, co-
herence, and order, cIPS did not differentiate between coherence
for second-order and first-order cue stimuli (cIPS interaction of
coherence and order, F(1,10) = 1.08, p = 0.324, n.s., h 2p = 0.10).
To determine whether cIPS might therefore have a specific role
in sensorimotor transformations (Erickson and Kayser, 2013),
we evaluated whether any of the four frontal and parietal regions
were differentially active when movement plans were imple-
mented (one-way ANOVA Button press vs Visual stimuli,
F(3,40) = 4.54, p = 0.008, h 2p = 0.25). cIPS did not distinguish
between the motor output and visual stimuli (t(10) = �1.26, p =
0.237, n.s., d = �0.38), but rIPS was significantly more active for
the button press (t(10) = 3.18, p = 0.009, d = 0.96). Neither of the
two prefrontal ROIs showed significantly different activity for
this contrast (pre-PMd, t(10) = �1.96, p = 0.079, n.s., d = �0.59;
PMd t(10) = 0.64, p = 0.536, n.s., d = 0.19). Together, these results
demonstrate that IPS subregions show selectivity for abstraction
consistent with their respective functionally connected frontal
regions. In addition, these IPS regions demonstrate sensitivity to
task factors not seen in the pre-premotor and dorsal premotor
areas previously shown to be sensitive to second- and first-order
rules, respectively. Specifically, cIPS processed information about

Figure 3. Univariate whole-brain analysis depicting the positive main effect of task rela-
tive to baseline across the group, FDR corrected, q , 0.05. ROIs are overlaid from the
Schaefer et al. (2018) parcellation map. Dashed white lines indicate preferential connectivity
defined by analysis of HCP data.
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sensory salience, whereas first-order rIPS was differentially active
during motor output.

To address the possibility that other functions of parietal cor-
tex, such as motor planning, might explain the findings in cIPS,
we next evaluated distinct orderings of the task stimuli on indi-
vidual trials, specifically, the position of the second-order cue rel-
ative to the relevant first-order cue. If cIPS is responsible for
motor planning, its BOLD activity in response to the first-order
cue should differ (1) when the first-order cue is presented after
the second-order cue, in which case motor planning is possible,
compared with (2) its presentation before the second-order cue,
in which case no motor planning is possible. As expected,
responses in the first-order regions, PMd and rIPS, to the relevant
first-order cue were significantly different (F(3,40) = 3.38, p = 0.027,
h 2p = 0.20) from responses to the relevant first-order cue in the
second-order regions, pre-PMd and cIPS; and activity in PMd and
rIPS was significantly larger when the relevant first-order cue was
presented after the second-order cue (PMd, t(10) = 3.86, p = 0.003,
d = 1.16; rIPS, t(10) = 2.64, p = 0.025, d = 0.80). However, activity
in pre-PMd and cIPS was unchanged (for both ROIs, p. 0.50, n.s.).
In keeping with this last finding, when BOLD activity in
response to the second-order cue was compared between (1)
when the second-order cue occurred after the first-order cue, in
which case motor planning is possible, and (2) when the second-
order cue occurred before the first-order cue, in which case no
motor planning is possible, there was no difference seen between
conditions (F(3,40) = 0.675, p = 0.573, n.s., h 2p = 0.05, and none of
the individual areas showed responses that differed from zero (all
p values. 0.36). Together, these results indicate that motor plan-
ning demands may be represented in rIPS but not in cIPS.

By the same token, the cue positions within a trial might
affect results related to relevant versus irrelevant information.

For first-order cues in position 1, subjects do not yet know which
cue is relevant and which is irrelevant as they have not yet seen
the second-order cue. Thus, in this position, there is as yet no
relevant/irrelevant distinction. Consistent with this prediction,
there were no significant differences in the BOLD response
between the (ultimately) relevant and irrelevant cues for any of
the ROIs, including PMd and rIPS, for position 1 (all p values.
0.21). However, in position 3, all the information for the trial is
available, and the differences between relevant and irrelevant
first-order cues should be maximal. As expected, PMd (t(10) =
3.31, p = 0.008, d = 1.0) and rIPS (t(10) = 4.08, p = 0.002, d =
1.23), but not pre-PMd (t(10) = 0.24, p = 0.812, n.s., d = 0.07) and
cIPS (t(10) = 0.02, p = 0.982, d = 0.01), strongly and significantly
distinguished relevant from irrelevant cues. As demonstrated in
Figure 4, these differences are strong enough to remain signifi-
cant when collapsed across positions.

An additional potential concern is that the results in Figure 4
hold only for a specific level of coherence. To address this possibil-
ity, we analyzed the response within cIPS and rIPS separately for
high and low coherence stimuli. For the contrasts of second-order
cue versus the relevant first-order cue for high coherence condi-
tions only and for low coherence conditions only, results were
similar. Specifically, both pre-PMd and cIPS responded signifi-
cantly differently than did PMd and rIPS for both high (F(3,40) =
21.2, p = 2.19 � 10�8, h 2p = 0.61) and low coherence stimuli
(F(3,40) = 14.7, p = 1.3� 10�6, h 2p = 0.52), and these two second-
order regions showed consistently greater activity for the second-
order stimulus in both cases (cIPS high, t(10) = 7.0, p = 3.6� 10�5,
d = 2.12; cIPS low, t(10) = 4.8, p = 7.3 � 10�4, d = 1.44; pre-PMd
high, t(10) = 5.7, p = 2.0 � 10�4, d = 1.72; pre-PMd low, t(10) = 4.7,
p = 8.0� 10�4, d = 1.43). In contrast, PMd and rIPS did not show
differential responses to these cues (all p values. 0.087).

Figure 4. ROI-based results. A, Within-ROI activity for the univariate contrast of all second-order cues versus first-order cues (top) and all first-order cues versus irrelevant cues (bottom). B,
Activity for the same ROIs in the contrast of all high coherence versus low coherence cues (top) and the time point of button press versus task stimulus displays (bottom). The b parameter is equiv-
alent to percentage signal change (see above, Materials and Methods). Error bars indicate between-subject SEM. Asterisks indicate p, 0.05; n.s. indicates non-significant (Extended Data Table 4-1).
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For the contrast of relevant versus irrelevant cues, the results for
high coherence demonstrated significant differences between first-
order and second-order regions (F(3,40) = 3.61, p = 0.02, h 2p =
0.21). However, although both PMd and rIPS moved in the
expected direction numerically, the contrast was not significantly
different from zero in either of these regions [rIPS, t(10) = 2.03, p =
0.07 (trend), d = 0.61; PMd, t(10) = 0.96, p = 0.36, n.s., d = 0.29]. For
low coherence, although high variance in the pre-PMd and cIPS
responses rendered the differences between regions nonsignificant
in a one-way ANOVA (F(3,40) = 0.44, p = 0.73, n.s., h 2p = 0.03),
responses within PMd and rIPS, but not in pre-PMd and cIPS,
remained significantly different from zero after Bonferroni correc-
tion (rIPS, t(10) = 3.5, p = 0.0056, d = 1.06; PMd, t(10) = 3.56, p =
0.0052, d = 1.07; pre-PMd and cIPS, both p values . 0.49, n.s.).
Thus, in keeping with the lack of a three-way interaction between
ROI, abstraction, and coherence, these data suggest that coherence
does not directly modulate the difference between second-order
and first-order responses in these areas.

IPS subregions with connectivity to both pre-PMd and PMd
Given that cIPS and rIPS were selected because of their strongly
differentiated connectivity with pre-PMd/PMd, and they subse-
quently exhibited complementary differences in task activity, we
predicted that parietal regions with less specific connectivity to
both pre-PMd and PMd would demonstrate less differentiated
task responses. Thus, we next searched parietal cortex for regions
with strong connectivity to both pre-PMd and PMd in HCP rs-
fMRI data (see above, Materials and Methods). We identified the
following five parcels: parcel 197 [IPSa, MNI centroid (�42,
�40, 42)], parcel 196 [IPSb (�52, �34, 44)], parcel 204 [IPSc
(�32,�48, 46)], parcel 326 [IPSd (�48, �42, 50)], and parcel
212 [IPSe (�38, �52, 58); Extended Data Table 4-1] All parietal
parcels with nonspecific connectivity were located in IPS and sit-
uated along the rostral-caudal axis of the sulcus. Frontal connec-
tivity discrepancies in IPSa–e were different from cIPS and rIPS
but not significantly different from each other (F(6,693) = 16.63,
p = 5.712 � 10�18, h 2p = 0.13; see above, Materials and Methods),
allowing us to draw comparisons between subregions with less

specific connectivity to pre-PMd/PMd and those with more selec-
tive connectivity.

Confirming our predictions, these IPSa–e subregions showed
task activations that were both largely similar to each other and
also dissimilar to those of rIPS and cIPS (Extended Data Table 4-
1). A three-way ANOVA with factors of ROI, coherence, and
order produced an interaction of coherence and ROI (F(6,60) =
6.92, p = 1.28 � 10�5, h 2p = 0.41) that was driven entirely by co-
herence effects in cIPS. In post hoc analyses, the only subregion
with a significant difference in activity for sensory salience was
cIPS, and the only subregion with a significant effect of motor out-
put was rIPS (see nonsignificant results for IPSa–e in Extended
Data Table 4-1). With respect to motor planning and attentional
control over first-order cues, only rIPS and IPSc (IPSc, t(10) = 2.42,
p = 0.036, d = 0.73) had significantly greater activity for first-order
relevant versus irrelevant cues. However, post hoc analyses of the
interaction of order and ROI (F(2.54,25.36) = 9.34, p = 0.004, h 2p =
0.48) revealed that all five of the nonspecific connectivity subre-
gions had significantly greater activity for the second-order cue
compared with the first-order cue (Extended Data Table 4-1; see
also below). To further investigate this latter result, we evaluated
whether this responsiveness to second-order cues demonstrated
systematic variation.

Graded activity for second-order decisions along the
rostrocaudal axis of IPS
After discovering that the five previously identified IPS subre-
gions along the rostrocaudal axis (see above, Materials and
Methods) had varying sensitivity to the second-order cue, we
conducted an exploratory analysis to determine whether a
relationship existed between spatial location and higher-order
abstraction. We hypothesized that the response to second-
order versus first-order stimuli might vary with rostrocaudal
position (Choi et al., 2018). We therefore correlated the ante-
roposterior position of all seven IPS subregions (IPSa-e, cIPS,
rIPS) with their respective b values for the Second-order v
First-order contrast (Fig. 5). We found a significant correla-
tion between the anteroposterior position, as indexed by the

Figure 5. Variation in responsiveness to abstraction along the rostral-caudal axis of IPS. The Pearson’s correlation for the b parameter estimate for each contrast (see below) is plotted ver-
sus the MNI y coordinate of seven IPS subregions defined by independent connectivity measures (see above, Materials and Methods). Information related to the level of abstraction (second-
order cue vs first-order cue contrast) is indicated by the circular symbols and black solid line, whereas information related to the relevance of the first-order cue (first-order cue vs irrelevant cue
contrast) is denoted by the square symbols and black dashed line. Left, A significant difference between the two correlations is represented by the solid gray bracket. The color of each data
point corresponds to the color-coded ROI shown on the surface at right (lime green, cIPS; pink, IPSe; purple, IPSc; orange, IPSd; bright blue, rIPS; red, IPSa; brown, IPSb). Asterisks indicate p,
0.05, n.s. indicates non-significant. Extended Data Table 5-1 shows the within-subject correlations of abstraction versus rostral-caudal position.
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MNI y coordinate of the centroid, and b value [r(5) = �0.77,
p = 0.044; Fig. 5] This result remained strongly significant
when we assessed the correlation within individual subjects,
for which the slopes were all negative and different from zero
(r = �0.64 6 0.24, t(10) = �8.67, p = 5.8 � 10�6, d = �2.62;
Extended Data Table 5-1). Interestingly, the increase in selec-
tivity for the second-order cue in more caudal IPS subregions
was topographically opposite to that of frontal cortex, where
more rostral regions show greater responsiveness to more
abstract stimuli. Notably, the correlations were not significant
if we instead correlated anteroposterior position with strength
of resting-state functional connectivity to pre-PMd, [r(5) =
�0.47, p = 0.29, n.s.] or to PMd [r(5) = 0.67, p = 0.10, n.s.].

To test whether motor planning and attentional control over
the relevant first-order cue was similarly represented in spatially
graded activity, we next correlated b values of the First-order
versus Irrelevant dataset with the MNI y coordinate of the seven
IPS subregions (IPSa–e, rIPS, cIPS). We found no correlation
between these variables [r(5) = 0.55, p = 0.202, n.s.]. However, a
comparison of the Second-order versus First-order spatial rela-
tionship and the First-order versus Irrelevant spatial relationship
revealed that these two correlations were significantly different
from each other (z = �2.31, p = 0.010; Fig. 5). These results sug-
gest that a representation of higher-order abstract information
within a spatial gradient may be a topographic feature of IPS.

Conjunction maps for parietal cortex
To further determine whether the ROI-based results shown in
Figure 4 were specific for connectivity-defined parcels, we
expanded our search to the rest of parietal cortex. To this end,
we computed conjunction maps within parietal cortex between
pertinent contrasts for both cIPS and rIPS (see above, Materials
and Methods). To identify additional cIPS-like regions, we eval-
uated BOLD activity, which, like cIPS, differentiates second-
order from first-order cues and high from low coherence but
does not distinguish relevant from irrelevant cues or the button
press from other task stimuli. As shown in Figure 6A, the largest

cluster, 85 voxels centered at MNI coordinates [�34, �64, 49]
includes substantial overlap with the connectivity-defined cIPS
region (purple voxels). Additional areas only defined in the
exploratory analysis extend forward along the sulcus (red vox-
els), consistent with the gradient of IPS regions found in
Figure 5. The smallest cluster, 17 voxels centered at [38, �59,
47], identifies a homologous area in the right hemisphere. The
final two clusters, 47 voxels at [6, �63, 51] and 42 voxels at
[�7, �67, 52], encompass medial parietal regions on the bor-
ders of the task active mask that are typically grouped with
medial parietal default mode areas.

To identify rIPS-like regions, we evaluated BOLD activity,
which, like rIPS, differentiates relevant from irrelevant cues and
button presses from task stimuli but does not distinguish sec-
ond-order from first-order cues or high from low coherence.
Two clusters of voxels were identified (Fig. 6B), one 29-voxel
cluster with center of mass at [�39, �41, 58] in which rIPS and
the exploratory contrast overlap (left) and one 21-voxel cluster
with center of mass at [�52, �27, 43] in which only the explora-
tory contrast is identified (right). This latter region is within the
postcentral gyrus, the presumptive location of primary somato-
sensory cortex.

Discussion
IPS is implicated in a number of cognitive functions, from the
mapping of attention within visual space to action execution.
Here, we demonstrate that IPS regions distinguished by their
intrinsic functional connectivity with frontal cortex respond
differentially to distinct levels of policy abstraction in a man-
ner separable from attentional control, motor planning, sen-
sory features, and motor responding.

These results follow previous work on policy abstraction
establishing that parietal cortical activity may respond to
increasing abstraction. Nee and D’Esposito (2016) demon-
strated that parietal cortex is strongly active across different
levels of control demands, although they did not evaluate
whether such activity varied parametrically with abstraction.
Similarly, in a pioneering rs-fMRI study (Choi et al., 2018)
that analyzed previously published task data (Badre and
D’Esposito, 2007), lateral frontal regions whose activity corre-
lated with progressively more abstract decisions in caudal-to-
rostral fashion were shown to participate in intrinsic networks
whose parietal components were consistent with a rostral-to-
caudal gradient. However, their network analysis did not
investigate more granular parietal activations in areas impli-
cated in sensorimotor transformations (Erickson and Kayser,
2013). Here, we used a multimodal parcellation to identify
specific subdivisions of IPS. Moreover, in a post hoc analysis,
we found that the cIPS parcel (parcel 321) identified in our
connectivity-based analysis was also the parcel with peak activity
for the second-order cue when restricted only by atlas bounda-
ries of parietal cortex (see above, Materials and Methods),
strengthening the link between resting-state connectivity and
task-based results. Another important difference is neuroana-
tomical focus; the task in Choi et al. (2018) was designed to
understand policy abstraction while controlling for confounds
critical in frontal cortex. Here, we build on this work by control-
ling for additional processes specific to parietal cortex, for exam-
ple, by equating the featural complexity of visual stimuli.

In keeping with the potential importance of parietal-specific
confounds, these data demonstrate that the functions of frontal
and parietal areas within intrinsic networks are not homogeneous

Figure 6. A, cIPS-like regions: four clusters are identified. Voxels only defined in the ex-
ploratory analysis are shown in red, voxels only present in the cIPS parcel are displayed in
blue, and voxels that overlap with the connectivity-defined cIPS region are shown in purple.
B, rIPS-like regions: two clusters are identified. Left, voxels only defined in the exploratory
analysis are shown in red, voxels only present in the rIPS parcel are displayed in blue, and
voxels that overlap with the connectivity-defined rIPS region are shown in purple. However,
because of the transformation from a volume to a surface rendering for display purposes,
purple voxels are not visible in B.
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(Fig. 4) but instead make distinct contributions to decision-mak-
ing. Here, we find that cIPS (and not pre-PMd) responds
strongly to coherence differences, whereas rIPS (and not PMd) is
sensitive to the motor response. The former result is consistent
with findings that a region within right inferior parietal lobule
correlates with perceptual capacity, whereas an area within left
middle frontal gyrus correlates with cognitive control capacity
(Eayrs and Lavie, 2019). These findings are also compatible with
other significant frontal/parietal dissociations. For example, pari-
etal cortex, which is well situated to serve as an episodic buffer in
working memory (Gelastopoulos et al., 2019), might participate
in the manipulation but not the monitoring of items within
working memory, unlike lateral frontal cortex (Champod and
Petrides, 2010). Likewise, in a spatial working memory task per-
formed in patients with lesions, frontal lesions reduced resistance
to distraction, whereas parietal lesions impaired the ability to
benefit from predictable spatial positions of targets (Saj et al.,
2018).

Less consistent with specializations within parietal cortex is
the distinction between cIPS and rIPS in the response to coher-
ence. Behaviorally, subjects performed better when both second-
and first-order cues were high rather than low coherence (Fig.
2), but only activity in cIPS significantly distinguished the two
coherence levels without regard to hierarchical order. This result
may reflect the multimodal nature of responses in parietal cortex
(Xu, 2018), and IPS in particular. The location of cIPS in this
study (MNI centroid �32, �70, 50) approximates the location of
IPS2 (Fig. 7), a region previously shown to contain a retinotopic
map of spatial attention (Silver and Kastner, 2009; Wang et al.,
2015), among other functions (Kastner et al., 2017; Xu, 2018).
That cIPS activation varies with coherence across orders may
therefore reflect its general responsiveness to differences in stim-
ulus salience. The spatial conjunction of this response to both
perceptual and higher-order features might enable cIPS to access

both cues as needed, although we did not detect a corresponding
change in univariate activity reflecting this conjunction.

More generally, these findings build on work demonstrating
that IPS responds to stimuli that are more abstract by definitions
other than policy abstraction. Left IPS has been shown to
respond in load-dependent fashion for both visual and verbal
stimuli, generalizing across sensory modality (Cowan et al.,
2011). Moreover, IPS connectivity with object-sensitive regions
in temporal cortex distinguishes between conditions in which
objects must be either categorized as part of a group or identified
as a specific exemplar (McMenamin et al., 2016). In keeping with
the known importance of IPS for motor function (Medina et al.,
2020), left IPS may also hold effector-independent motor plans
(Swinnen et al., 2010). Of course, this diversity of findings
emphasizes the importance of defining abstraction, so that com-
mon elements that link definitions of abstraction across studies
can be discerned (Badre, 2008).

There are also limits to what IPS may encode. IPS may not
encode abstract signals related to overall task set or performance
monitoring, for example. In support of the primacy of IPS for
shaping the response but not the task set, Palenciano et al. (2019)
found that IPS represented response complexity but not instruc-
tions. Similarly, during a switch task, transcranial magnetic stim-
ulation over left IPS early in the task disrupted updating of
response sets but not task goals, whereas the same stimulation
later in the preparatory phase also disrupted goal updating, sug-
gesting that IPS might inherit goal updates from linked frontal
regions (Muhle-Karbe et al., 2014). These different findings are
broadly consistent with a view in which posterior parietal cortex,
including the IPS, might represent action-independent, nonspa-
tial visual information (Xu, 2018).

At the same time, cIPS may certainly have capacities for
abstract cognitive processes beyond specific second-order policy
abstraction decisions. Parietal cortex includes multiple polymodal

Figure 7. A, The locations of cIPS and rIPS (dark blue) relative to the most overlapping regions (left, IPS 2; right, IPS 5) from the functional atlas of Wang et al. (2015), where overlap is
defined by the number of shared voxels. cIPS and rIPS are largely outside the majority of the probability mass that defines IPS 2 and IPS 5, suggesting that they may be somewhat distinct
from these previously defined areas. B, The locations of cIPS and rIPS relative to regions defined in a series of other studies. cIPS is closest to the short-term visual working memory area identi-
fied by Todd and Marois (2004), although it is somewhat lateral to this region and posterior to the motor planning (action) regions evaluated in Frey et al. (2005) and Culham et al. (2003).
Consistent with results that rIPS is more directly involved in defining motor responses than is cIPS, rIPS lies between these previously identified motor planning areas.
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areas, and a single macroscopic region can have multiple func-
tions. Moreover, it is not yet known how unitary the cognitive
processes that underlie abstract rule processing might be (Badre
and Nee, 2018) nor their relationship to other known functions of
parietal cortex. To answer such questions, additional task
manipulations and converging evidence are likely necessary.
For example, to assess whether information manipulation (as
opposed to policy abstraction per se) explains the function of
this area, one could vary the size of the response set and the
level of abstraction independently (Badre and D’Esposito,
2007). In comparison with a two-alternative second-order
cue condition, a four-alternative first-order condition would
have increased selection demands but reduced abstraction. If
cIPS were only responsible for information manipulation in-
dependent of abstraction, it might not differentiate these
conditions.

Notably, the current data do not directly indicate the mecha-
nisms by which IPS might support policy abstraction. Because
the behavioral results indicate that second- and first-order rules
have been encoded and retained within a trial, working memory
is undoubtedly required. However, for trials in which the sec-
ond-order rule was encoded in the first position, and subjects
therefore retained it until the first-order stimulus was viewed in
either position 2 or 3, cIPS activity did not differ between any
position (repeated-measures ANOVA, F(5,50) = 2.19, p = 0.07,
h 2p = 0.18). Moreover, cIPS activity was numerically lower for
the second-order rule in position 1 (for presumptive encoding of
the rule into working memory) than it was in response to the
irrelevant cue in position 3 (when the response would already
have been decided, and maintaining the second-order rule
was no longer necessary). Thus, these data do not strongly
support a purely working memory-based account of cIPS ac-
tivity. However, work that more directly manipulates working
memory demands would be important to fully understand
mechanisms underlying cIPS activity.

Related to these questions of what IPS encodes and how IPS
encodes it is the problem of where IPS encodes it (Fig. 7).
Previous work has identified topographically organized IPS sub-
regions, including attentional maps with systematic representa-
tions of retinotopic space (Silver et al., 2005) extending along the
sulcus (Silver and Kastner, 2009). This organization supports
theories that IPS includes priority maps corresponding to the
attentional weighting of a spatial location (Jerde and Curtis,
2013), so that lesions in these areas disrupt saccades to remem-
bered locations (Mackey et al., 2016). In contrast, more anterior-
superior regions of IPS may respond more to features than to
locations (Bettencourt and Xu, 2016), with the most anterior
regions integrating feature and action to enable tool use (Kastner
et al., 2017). How the abstract representations evaluated here are
organized with respect to other feature responses in previously
defined IPS subdivisions (e.g., retinotopic IPS0–5) remains an
important topic for future studies.

Altogether, these findings demonstrate that topographically
organized regions within IPS respond differentially to policy
abstraction, both distinct from representations of attentional
control, sensory features, and motor responses, and within spe-
cific networks identifiable by their intrinsic frontal connectivity.
This work builds on previous studies that emphasize the polymo-
dal nature of parietal cortex (Goldman-Rakic, 1988; Mesulam,
1998) and the importance of IPS in other complex cognitive
processes such as sensorimotor transformations (Erickson and
Kayser, 2013; Kastner et al., 2017; Xu, 2018). Future work should
continue to define how the representations and connectivity of

IPS contribute to human performance in abstract, hierarchically
organized tasks.
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