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Abstract

Gambling disorder is a behavioral addiction associated with impairments in value-based decision-making and
cognitive control. These functions are thought to be regulated by dopamine within fronto-striatal circuits, but
the role of altered dopamine neurotransmission in the etiology of gambling disorder remains controversial.
Preliminary evidence suggests that increasing frontal dopamine tone might improve cognitive functioning in
gambling disorder. We therefore examined whether increasing frontal dopamine tone via a single dose of the
catechol-O-methyltransferase (COMT) inhibitor tolcapone would reduce risky choice in human gamblers
(n=14) in a randomized double-blind placebo-controlled crossover study. Data were analyzed using hierarchi-
cal Bayesian parameter estimation and a combined risky choice drift diffusion model (DDM). Model compari-
son revealed a nonlinear mapping from value differences to trial-wise drift rates, confirming recent findings. An
increase in risk-taking under tolcapone versus placebo was about five times more likely, given the data, than a
decrease [Bayes factor (BF) = 0.2]. Examination of drug effects on diffusion model parameters revealed that an
increase in the value dependency of the drift rate under tolcapone was about thirteen times more likely than a
decrease (BF=0.073). In contrast, a reduction in the maximum drift rate under tolcapone was about seven
times more likely than an increase (BF=7.51). Results add to previous work on COMT inhibitors in behavioral
addictions and to mounting evidence for the applicability of diffusion models in value-based decision-making.
Future work should focus on individual genetic, clinical and cognitive factors that might account for heteroge-
neity in the effects of COMT inhibition.
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Significance Statement

Gambling disorder is associated with impairments in value-based decision-making and cognitive control,
functions regulated by the neurotransmitter dopamine. Here, we examined whether increasing frontal dopa-
mine tone via the catechol-O-methyltransferase (COMT) inhibitor tolcapone would reduce risky choice in a
group of gamblers. Computational modeling did not reveal consistent reductions in risky decision-making
under tolcapone in gamblers. If anything, tolcapone increased risky choice. Future work should focus on in-
dividual genetic, clinical, and cognitive factors that might account for heterogeneity in the effects of COMT
inhibition.

Introduction
Gambling disorder is a prototypical behavioral addic-

tion that shares behavioral and neural features with

substance use disorders (Fauth-Bühler et al., 2017).
Consequently, gambling disorder is now classified with
substance-related and addictive disorders in the DSM-V
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(American Psychiatric Association, 2013). Because dysre-
gulation in the dopamine system is implicated in sub-
stance use disorders (Robinson and Berridge, 1993;
Volkow et al., 2017), similar dysregulation might exist in
gambling disorder. Past studies have indeed identified
changes in the dopamine system (Clark et al., 2012;
Joutsa et al., 2012; Boileau et al., 2013, 2014; van Holst et
al., 2018), but there is considerable heterogeneity in the
direction of these group differences (Kayser, 2019), and
the robustness of some of the reported effects has re-
cently been questioned (Potenza, 2018).
This heterogeneity may partly explain the mixed results

of past open-label and placebo-controlled trials of drugs
targeting the dopamine system in gambling disorder.
While the dopamine D2 antagonist olanzapine was not
superior to placebo (Fong et al., 2008; McElroy et al.,
2008), both the dopamine D1 receptor antagonist ecopi-
pam (Grant et al., 2014) and the catechol-O-methyltrans-
ferase (COMT) inhibitor tolcapone (Grant et al., 2013)
showed promising results. These different study out-
comes could be related to different loci of dopaminergic
effects. While olanzapine’s actions are thought to primar-
ily impact striatal function, ecopipam and tolcapone may
act more cortically. Tolcapone in particular takes advant-
age of the fact that significant cortical dopamine inactiva-
tion is accomplished via degradation by COMT. Using
tolcapone to inhibit COMT could therefore lead to a rela-
tively specific increase in frontal dopamine availability
(Käenmäki et al., 2010), thereby augmenting top-down
control.
Consistent with this idea, problem gambling is more fre-

quent in gamblers who carry the more active Val/Val poly-
morphism of the COMT Val158Met allele (rs4680; Grant et
al., 2015), presumably leading to lower frontal dopamine
tone. Tolcapone also reduced compulsivity in gamblers in
proportion to its effect on fronto-parietal activity (Grant et
al., 2013) and reduced temporal discounting in gamblers
in proportion to its effect on fronto-striatal connectivity
(Kayser et al., 2017). Further effects of tolcapone relate to
improvements in decision-making and executive control
(Farrell et al., 2012; Kayser et al., 2012, 2015; Mitchell et
al., 2018).
These domains are generally associated with impair-

ments in gamblers, who show increased temporal dis-
counting (Wiehler and Peters, 2015) and risk-taking
(Ligneul et al., 2012; Miedl et al., 2012). In keeping with a
dopaminergic influence on these functions, temporal dis-
counting (Pine et al., 2010) and risk-taking (Rutledge et
al., 2015; Rigoli et al., 2016) in control subjects are in-
creased following the administration of the dopamine

precursor L-DOPA, which is thought to boost dopamine
availability more in the striatum than in the cortex (Lloyd
and Hornykiewicz, 1972). Overall, however, the human lit-
erature is somewhat inconsistent about the direction of
these effects (D’Amour-Horvat and Leyton, 2014). We
have recently shown that a putative increase in striatal do-
pamine leads to a reduction in temporal discounting
(Wagner et al., 2020), in keeping with rodent work demon-
strating that moderate increases in striatal dopamine tend
to improve impulse control. Another study only partly re-
plicated the findings of Pine et al. (2010), such that the ef-
fects of L-DOPA depended on individual differences in
self-control (Petzold et al., 2019). On the other hand, in-
creasing frontal dopamine levels via COMT inhibition
might more directly improve decision-making and impulse
control, with potential effects of COMT genotype status
(Farrell et al., 2012).
Given this hypothesis, we examined a subset of gam-

blers from a previous randomized, double-blind, placebo-
controlled crossover study (Kayser et al., 2017) to assess
whether increasing frontal dopamine levels via tolcapone
would reduce risk-taking behavior in gamblers. Based on
recent work in reinforcement learning (Pedersen et al.,
2017; Shahar et al., 2019; Fontanesi et al., 2019; Mileti�c et
al., 2020), temporal discounting (Peters and D’Esposito,
2020; Wagner et al., 2020), and risky choice (Peters and
D’Esposito, 2020), we assessed decision-making using a
modeling framework based on the drift diffusion model
(DDM; Ratcliff et al., 2016) in the context of a hierarchical
Bayesian estimation scheme. This modeling approach
has the benefit of accounting for the full response time
(RT) distributions associated with decisions, thereby provid-
ing more detailed information regarding choice dynamics
(Pedersen et al., 2017; Mileti�c et al., 2020) and more stable
parameter estimates (Shahar et al., 2019). Furthermore, the
DDM can provide novel insights into pharmacological ef-
fects on the dopamine system (Wagner et al., 2020). Based
on these results, we examined whether a pharmacological
modulation of frontal dopamine levels would likewise modu-
late choice dynamics in frequent gamblers during risky deci-
sion-making.

Materials and Methods
Participants
Participants were recruited via online advertisements.

Subjects with South Oaks Gambling Screen (SOGS)
scores.5 (Lesieur and Blume, 1987) were invited to par-
ticipate in screening procedures. This cutoff has been
used clinically to minimize false negatives as opposed to
false positives in the diagnosis of gambling disorder
(Goodie et al., 2013). To further characterize the extent of
their gambling, eligible participants then underwent the
Structured Clinical Interview for Pathologic Gambling
(Grant et al., 2004), a validated instrument based on
DSM-IV criteria.
Subjects were required to be between 18 and 50 years

old, in good health, able to read and speak English, and
able to provide informed consent. Subjects were ex-
cluded if, after completion of the Mini-International

This work was supported by the National Center for Responsible Gaming
(A.K.) and the Deutsche Forschungsgemeinschaft (DFG) Grant PE1627/5-1 (to
J.P.).
Correspondence should be addressed to Jan Peters at jan.peters@

uni-koeln.de.
https://doi.org/10.1523/ENEURO.0461-19.2020

Copyright © 2020 Peters et al.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 13

May/June 2020, 7(3) ENEURO.0461-19.2020 eNeuro.org

mailto:jan.peters@uni-koeln.de
mailto:jan.peters@uni-koeln.de
https://doi.org/10.1523/ENEURO.0461-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Neuropsychiatric Interview (Sheehan et al., 1998), they
met screening criteria for an Axis I psychiatric disorder
other than gambling disorder, such as major depression,
or had a significant medical or psychiatric illness requiring
treatment (see also below). Women of reproductive age
were required to be using an effective form of contracep-
tion and to be neither pregnant nor lactating during study
participation. A positive urine drug toxicology screen be-
fore any visit was also grounds for exclusion, as was an
alcohol level greater than zero as measured by breatha-
lyzer before any visit. Similarly, subjects were excluded
for reported use of psychoactive substances (including
both prescription medications and drugs of abuse) within
the prior two weeks, use of illicit drugs of abuse.10 times
in the previous year, or current dependence on marijuana.
Subjects could otherwise use marijuana no more than
three times per week and were required to refrain from
marijuana use for at least 48 h before testing sessions.
Subjects who were taking medications with dopaminergic,
serotonergic, or noradrenergic actions (although animal
work suggests that tolcapone induces increases in dopa-
minergic but not noradrenergic concentrations; Tunbridge
et al., 2004) or who had a known allergy to either tolcapone
or the inert constituents in tolcapone capsules, were also
excluded. Because tolcapone carries the potential for hep-
atotoxicity, liver function tests as assessed by phlebotomy
were required to be no more than three times the upper
limit of normal.
Of the 14 eligible subjects whose data were evaluated

here, nine met the criteria for pathologic gambling. Six
also met criteria for current alcohol dependence. Because
of the strong overlap between gambling disorder and al-
cohol use disorder, we did not exclude these subjects,
but they were required to have a negative breathalyzer
test to consent and to participate in all study sessions. All
14 participants had a 0.00 reading on the breathalyzer at
the time of consent and at all subsequent study visits. We
also did not exclude subjects who used nicotine, and the
two regular smokers (out of four total nicotine-using sub-
jects) were both easily able to refrain for the duration of
specific study sessions. Table 1 provides an overview of
the clinical and demographic data of all participants. The
study procedure was approved by the local institutional
review board, and participants provided written informed
consent before participation.

Control group
Following the suggestion by two anonymous reviewers,

we compared the data from the gamblers under placebo
to data from a set of control participants (n=19) from a
previous study (Peters and D’Esposito, 2020). It should be
noted, however, that these groups were not matched to
the gamblers on age, such that control participants were
older on average.

Drug administration
Subjects were randomized in double-blind, placebo-

controlled, crossover fashion to either placebo or a single
200-mg dose of tolcapone on their first visit and the

alternative treatment on their second visit. This dose was
based on previously published findings that a single 200-
mg dose has measurable behavioral effects (Kayser et al.,
2012, 2015; Sáez et al., 2015). The present behavioral
testing session took place after completion of a functional
magnetic resonance imaging (fMRI) study (Kayser et al.,
2017). Subjects began the current task ;3 h after tolca-
pone and placebo ingestion. Tolcapone is expected to
have pharmaco-dynamically relevant serum concentra-
tions for at least 6 h (Dingemanse et al., 1995; Nyholm,
2006) and levels remain markedly above baseline well
past 3 h (Jorga et al., 1999, 2000). No subjects reported
potential side effects under either the placebo or tolca-
pone conditions during their participation, and subjects
could not reliably differentiate tolcapone from placebo. At
the end of each study session, they were asked to guess
whether they received tolcapone or placebo. Across the
total of 28 choices (14 subjects � two sessions), partici-
pants correctly identified tolcapone and placebo 50% of
the time (14 choices out of 28).

Risk-taking task
On each testing day, participants completed 112 trials

of a risky-choice task involving a series of choices be-
tween a smaller, certain reward ($10 with 100% probabil-
ity) and larger, but riskier, options. A first set of risky
options consisted of all combinations of 16 reward
amounts (10.1, 10.2, 10.5, 11, 12, 15, 18, 20, 25, 30, 40,
50, 70, 100, 130, and 150 dollars) and seven probabilities
(10%, 17%, 28%, 54%, 84%, 96%, and 99%). We used a
second set of probabilities (11%, 18%, 27%, 55%, 83%,
97%, and 98%) in combination with the same series of re-
ward amounts to create a second set of 112 trials. The as-
signment of the two sets of trials to the two drug conditions
was randomized across participants. The experiment was
implemented in Presentation (Neurobehavioral Systems).
Trials were presented in randomized order and with a
randomized assignment of safe/risky options to the left/
right side of the screen. Both options remained on the
screen until a response was made. An fMRI version of this

Table 1: Demographic and clinical characteristics of the
gamblers

N/mean (SD) Range
N female/male 6/8
N smokers/nonsmokers 4/10
COMT genotype
(Val/Val, Val/Met, Met/Met)

7/4/3

Age 32.57 (9.03) 20–47
YoE 14.93 (1.86) 12–18
SOGS 10.79 (3.07) 6–18
GRCSTotal 97.79 (14.08) 76–116
BDI 11.79 (7.89) 0–27
AUDIT 11.93 (6.40) 2–20
BIS 70.5 (9.62) 50–88

SOGS, South Oaks Gambling Screen (Lesieur and Blume, 1987); GRCSTotal,
Gambling-Related Cognitions Scale (Raylu and Oei, 2004); BDI, Beck
Depression Inventory (Beck et al., 1996); AUDIT, Alcohol Use Disorders
Identification Test (Saunders et al., 1993); BIS, Barratt Impulsivity Scale
(Patton et al., 1995); YoE, years of education; COMT, catechol-O-
methyltransferase.
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task has previously been shown to have good test-retest
reliability (Peters and Büchel, 2009; Menz et al., 2012) and
has been successfully applied to characterize neural corre-
lates of risky decision-making and subjective value in
healthy young participants (Peters and Büchel, 2009; Menz
et al., 2012).

Computational modeling
Risky choice model
We applied a simple single-parameter discounting

model to describe how value changes as a function of
probability, such that discounting is hyperbolic over the
odds against winning the gamble (Green and Myerson,
2004; Peters and Büchel, 2009; Menz et al., 2012):

SVðriskytÞ ¼ At

11ðexp h1 spItð Þ p u t
;with u t ¼ 1� pt

pt
:

(1)

Here, A is the numerical reward amount of the risky op-
tion, u is the odds against winning, and I is an indicator
variable that takes on a value of 1 for tolcapone data and
0 for placebo data. The model has two free parameters: h
is the hyperbolic discounting rate from the placebo condi-
tion (modeled in log-space), and s is a weighting parame-
ter that models the degree of reduction in discounting
under tolcapone versus placebo. Thus, the smaller the
value of h, the smaller the weighting of the odds against
winning, and the greater the subjective value of the risky
option.

Choice rules
We used two different approaches to model partici-

pants’ behavior. First, we used softmax action selection
to model binary (categorical) decisions. Second, we used
the DDM to jointly account for choices and RTs.

Softmax action selection
Softmax action selection models the choice probabil-

ities as a sigmoid function of value differences (Sutton
and Barto, 1998):

PðriskyÞt ¼
eb pSVðriskytÞ

eb pSVðriskytÞ 1 eb pSVðsafetÞ : (2)

Here, SV is the subjective value of the risky reward ac-
cording to Equation 1, and b is an inverse temperature
parameter, modeling choice stochasticity (for b ¼ 0,
choices are random and as b increases, choices become
more dependent on the option values).

Drift diffusion choice rule
To better characterize the dynamics of the decision pro-

cess, we replaced softmax action selection (Eq. 2) with
the DDM, based on recent work in reinforcement learning
(Pedersen et al., 2017; Fontanesi et al., 2019; Shahar et
al., 2019). The DDM accounts not only for binary choices
but for the full reaction time distributions associated with
those decisions. We used the Wiener Module (Wabersich
and Vandekerckhove, 2014) for the JAGS statistical mod-
eling package (Plummer, 2003) that implements the

likelihood function of a Wiener diffusion process. The
DDM assumes that decisions arise from a noisy evidence
accumulation process that terminates as the accumulated
evidence exceeds one of (usually) two decision bounds.
Reinforcement learning applications of the DDM have
used accuracy coding to define the response boundaries
of the DDM (Pedersen et al., 2017; Fontanesi et al., 2019;
Shahar et al., 2019), such that the upper boundary corre-
sponds to selections of the objectively superior stimulus,
and the lower boundary to choices of the inferior option.
This structure is in line with the traditional application of
the DDM in the context of perceptual decision-making
tasks (Ratcliff and McKoon, 2008). However, in value-
based decision-making, there is typically no objectively
correct response. Therefore, previous applications of the
DDM in this domain have instead re-coded accuracy to
correspond to the degree to which decisions are consist-
ent with previously obtained preference judgements
(Milosavljevic et al., 2010). This approach is not possible,
however, when the goal is to use the DDM to model the
preferences that in such a coding scheme would deter-
mine the boundary definitions. Therefore, here we applied
stimulus coding, such that the upper boundary (1) corre-
sponded to the selection of the risky option and the lower
boundary (0) to the selection of the certain option.
We used percentile-based cutoffs for RTs, such that for

each participant, the fastest and slowest 2.5% of trials
were excluded. Excluding such outlier trials is common
practice in the application of the DDM (Pedersen et al.,
2017). The reason is that fast outlier trials force the mod-
eled RT distribution to shift as far toward 0 as required to
accommodate these observations. This can substantially
reduce the goodness-of-fit of the model, because a single
outlier RT that is not part of the typical ex-Gaussian-
shaped distribution can force the entire distribution to
shift, thereby substantially reducing model fit and impact-
ing group-level parameters.
RTs for choices of the certain 100% option were then

multiplied by �1 before model estimation. The RT on a
given trial is then distributed according to the Wiener First
Passage Time (WFPT):

RTt ;WFPT a; t ; z; vð Þ: (3)

Here, a is the boundary separation (modeling response
caution and influencing the speed-accuracy trade-off), z
is the starting point of the diffusion process (modeling a
bias toward one of the decision boundaries), t is the non-
decision time (reflecting perceptual and/or response
preparation processes unrelated to the evidence accumu-
lation process), and v is the drift rate (reflecting the rate of
evidence accumulation). In the JAGS implementation of
the Wiener model (Wabersich and Vandekerckhove,
2014), the starting point z is coded in relative terms and
takes on values between 0 and 1. That is, z=0.5 reflects
no bias, z. 0.5 reflects a bias toward the upper (risky op-
tion) boundary, and z, 0.5 reflects a bias toward the
lower (certain option) boundary.
We then compared three variants of the DDM. First, we

examined a null model (DDM0) without any value modula-
tion. In this model, the four DDM parameters (a; t , z, and
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v) were held constant across trials. Drug effects were
modeled by including a term modeling a tolcapone-in-
duced change relative to the placebo condition for each
parameter. Second, we examined two previously pro-
posed functions linking trial-by-trial changes in the drift
rate v to value differences. We examined a linear map-
ping (DDMlin) as previously proposed (Pedersen et al.,
2017):

vt ¼ vcoeff p SV riskytð Þ � SV safetð Þ� �
: (4)

Here, vcoeff maps trial-wise value differences onto the
drift rate v. SV is the subjective value of the rewards ac-
cording to Equation 1.
We also examined a recently proposed nonlinear

(DDMS) scheme (Fontanesi et al., 2019):

vt ¼ S vcoeff p SV riskytð Þ � SVðsafetÞ
� �� �

: (5)

S mð Þ ¼ 2 p vmax

11e�m
� vmax: (6)

Here, S is a sigmoid function centered at 0 withm being
the scaled value difference from Equation 5, and asymp-
tote 6 vmax. For DDMlin and DDMS, effects of choice diffi-
culty on RTs naturally arise. For more similar values, the
trial-wise drift rate approaches 0.

Hierarchical Bayesian models
Model building proceeded as follows. As a first step, all

models were fit at the level of individual participants. We
validated that good fits could be obtained, such that pos-
terior distributions were centered at sensible parameter
values and the Gelman–Rubin R̂ statistic, an estimate of
the degree of Markov chain convergence (see below),
was in an acceptable range of 1 � R̂ � 1:01. In a second
step, models were fit in a hierarchical manner with group-
level distributions for all parameters. We used the same
convergence criteria as for the single-subject models
(1 � R̂ � 1:01). For group level hyperparameters, we used
weakly informative priors (i.e., uniform distributions de-
fined over sensible ranges for means, Gamma distribu-
tions for precision). Here, models were fit separately to
the data from the placebo and tolcapone conditions, to
examine whether drug administration altered the relative
model ranking. Finally, after identifying the variant of the
DDM that accounted for both the placebo and tolcapone
data best, we fit this model across drug conditions. In this
final combined model, parameters from the placebo con-
dition were modeled as the “baseline,” and all drug effects
were modeled as Gaussians with group level priors with
m ¼ 0;s ¼ 2.

Data availability
Data cannot be shared publicly because participants

did not consent to have their data posted in a public re-
pository. Data are available from https://zenodo.org/
record/3760335 for researchers who meet the criteria for
access to confidential data.

Code accessibility
JAGS model code is available on the Open Science

Framework (https://osf.io/wtg89/). The JAGS model code
referenced here is the Extended Data 1.

Model estimation and comparison
Models were fit using Markov Chain Monte Carlo

(MCMC) as implemented in JAGS (version 4.2; Plummer,
2003) with the matjags interface (https://github.com/
msteyvers/matjags) for MATLAB (MathWorks) and the
JAGS Wiener module (Wabersich and Vandekerckhove,
2014). For each model, we ran two chains with a burn-in
period of 100,000 samples and thinning of 2. A total of
10,000 additional samples was then retained for further
analysis. Chain convergence was assessed via the R̂ sta-
tistic, where we considered 1 � R̂ � 1:01 as acceptable
values for all group-level and individual-level parameters.
Relative model comparison was performed via the
Deviance Information Criterion (DIC), where lower values
indicate a better fit (Spiegelhalter et al., 2002).

Posterior predictive checks
We additionally performed posterior predictive checks

to ensure that the best-fitting model captured key aspects
of the data. Therefore, during model estimation, we simu-
lated 10,000 full datasets from the hierarchical models
based on the posterior distribution of parameters. For
each participant and drug condition, model-predicted RT
distributions for a random sample of 1000 of these simu-
lated datasets were then smoothed with non-parametric
density estimation (ksdensity.m in MATLAB) and overlaid
on the observed RT distributions for each subject and
drug condition.

Analysis of drug effects
We characterize drug effects in the following ways.

First, we show group posterior distributions for all param-
eters, and 85% and 95% highest density intervals for the
posterior distributions of the tolcapone-induced changes
in parameters (shift parameters). Additionally, we report
Bayes factors (BF) for directional effects (Marsman and
Wagenmakers, 2017; Pedersen et al., 2017) based on the
posterior distributions of these shift parameters. This
value was determined via non-parametric kernel density
estimation in MATLAB (ksdensity.m) and computed as
BF ¼ i=ð1� iÞ, where i is the integral of the posterior dis-
tribution from 0 to 11. Following common criteria, BF .
3 indicate support for a model, whereas BF . 12 indicate
substantial support. Conversely, BF , 0.33 are inter-
preted as evidence in favor of the alternative model.
Lastly, we report standardized effect sizes for all drug-in-
duced changes and group differences, which we calcu-
lated based on the means of the group-level posterior
mean and precision parameters of the hierarchical model.

Genetics
DNA extraction and SNP analysis were performed on

salivary samples (Salimetrics) collected during the screen-
ing visit. DNA was extracted using Gentra Puregene
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reagents and protocols and quantified using the Pico
Green method (Invitrogen/Invitrogen). Genotyping of the
COMT (rs4680) polymorphism via polymerase chain reac-
tion was conducted using TaqMan technology (Applied
Biosystems).

Results
Model-free analyses
RT distributions across participants per drug condition

are shown in Figure 1A. Arcsine square root transformed
risky choice ratios (Fig. 1B) did not differ significantly
between drug conditions (t(13) = –0.677, p=0.51, 95%
confidence interval (CI): [–0.18, 0.095]). Likewise, median
RTs did not differ significantly between drug conditions
(t(13) = –0.184, p=0.857, 95% CI: [–0.32, 0.27]), arguing
that tolcapone did not induce low-level motor effects.

Softmax choice rule
In a first step we fit with a hyperbolic probability dis-

counting model (Eq. 1) in combination with softmax action
selection (Eq. 2). Posterior distributions under placebo as
well as group and tolcapone effects are summarized in
Figure 1 and Table 2. Compared with the control group
from Peters and D’Esposito (2020), gamblers under pla-
cebo if anything showed greater risk taking (BF=3.59)
and greater decision noise (smaller inverse temperature,
BF=9.36). Tolcapone had no detectable effect on deci-
sion noise (BF=1.28) and, if anything, reduced probability
discounting in gamblers (BF=0.384).

Model comparison
We next focused on DDM choice rules, and compared

three variants of the DDM: a null model without any value
modulation (DDM0), a model with a linear scaling of trial-
wise drift rates (DDMlin) and a model with nonlinear (sig-
moid) drift rate scaling (DDMS). To ensure that drug condi-
tion did not impact model ranking, we first fit the three
models separately to the data from the placebo and tolca-
pone conditions. As can be seen from Table 3, model
ranking was the same in the two drug conditions, such
that models including value modulation of the drift rate
outperformed the DDM0, and the nonlinear DDMS fit the
data better than the DDMlin.

Initial model validation
We next fit the DDMS to the combined data from the

two drug conditions, modeling the placebo condition as
the baseline, and tolcapone-induced changes in each pa-
rameter as additive changes relative to that baseline using
Gaussian priors centered at zero. As an initial validation
analysis, we checked whether the choice model parame-
ters estimated via a standard softmax choice rule (Eq. 2)
could be reproduced using the DDM. We therefore corre-
lated single subject mean posteriors for log(h) (risk taking
under placebo) and log(h)tolceffect (the change in risk taking
under tolcapone) from the hierarchical DDMS and the hier-
archical model with softmax action selection (see Fig. 3).
Both parameters were highly correlated between estima-
tion schemes (log(h): r=0.98, p, 0.0001, log(h)tolceffect:
r=0.93, p, 0.0001), indicating that parameters estimated
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Figure 1. A, Overall RT distributions for placebo (blue) and tolcapone (red). Here, positive RTs reflect choices of the risky option,
and negative RTs reflect choices of the safe option. B, Proportion of choices of the risky option RT per participant and drug condi-
tion. C, Median RT per participant and drug condition.

Table 2: Summaries of group differences in softmax model parameters and of tolcapone effects on softmax model
parameters

Softmax model parameter Group difference Tolcapone effect
Mdiff d BF Mdiff d BF

Inverse temperature (b) 0.065 0.698 9.36 0.005 0.048 1.28
Log(h) 0.479 0.263 3.59 –0.234 –0.169 0.384

In the summary of group differences in softmax model parameters, for each parameter, we report the mean group difference (controls – gamblersplacebo), standar-
dized effect sizes (Cohen’s d; see Materials and Methods), and BF testing for directional effects (Marsman and Wagenmakers, 2017; Pedersen et al., 2017). BF ,
0.33 indicates evidence for a increase in gamblersplacebo versus controls, whereas BF . 3 indicates evidence for a reduction (see Materials and Methods). In the
summary of tolcapone effects on softmax model parameters, for each parameter, we report the mean change under tolcapone versus placebo, standardized ef-
fect sizes (Cohen’s d), and BF testing for directional effects. Here, BF . 3 indicates evidence for an increase under tolcapone, whereas BF , 0.33 indicates evi-
dence for a decrease.
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via standard methods could be reproduced using the
DDM (Peters and D’Esposito, 2020).

Posterior predictive checks
Then we examined the extent to which the DDMS could

reproduce the reaction time distributions observed in indi-
vidual participants. To this end, we simulated 10,000 full
datasets from the models’ posterior distribution. The his-
tograms in Figure 4 show the observed reaction time dis-
tribution for each participant and drug condition, with a
smoothed density estimate of the model-generated reac-
tion time distribution (based on 1000 random samples
from the simulations) overlaid. Generally, the model ac-
counted reasonably well for the observed reaction time
distributions in most participants. The DDMS also ac-
counted for a similar proportion of binary decision under
tolcapone and placebo [M[range]placebo: 0.899 (0.798–

0.962), M[range]tolcapone: 0.879 (0.717–0.972), t(13) = 1.21,
p=0.249].

Effects of tolcapone on risk-taking and diffusion
model parameters
We next examined the posterior distributions of param-

eters of the final DDMS model in more detail. Figure 5, top
row, shows the group level posterior distributions for pa-
rameters at baseline (placebo) as well as parameters for
the Peters and D’Esposito (2020) control group. Figure 5,
center row, shows posterior distributions for tolcapone ef-
fects, and the bottom row shows posterior group differen-
ces (gamblersplacebo vs controls). Mean group differences,
tolcapone effects and BF testing for directional effects are
listed in Table 4. Under placebo, both boundary separa-
tion (response caution; Fig. 5A; Table 4) and non-decision
time (Fig. 5B; Table 4) in the gamblers under placebo
were substantially lower than the corresponding values in
the control group. Both groups also exhibited a bias to-
ward the safe option, reflected in a posterior distribution
of the starting point that was shifted slightly toward zero
(Fig. 5C). The maximum drift rate vmax at placebo was
higher in gamblers versus controls (Fig. 5D; Table 4), and
there was a robust positive effect of value differences on
the trial-wise drift rates, as reflected in a positive drift rate
coefficient parameter under placebo (vcoeff; Fig. 5E).
Interestingly, log(h) (i.e., risk-taking) in the gamblers under
placebo (Fig. 5F) was higher compared with our previous
control group, such that increased risk-taking in gamblers
was ;4.4 times more likely than a reduction. Notably, a
log(h) value of 0 would indicate risk neutrality such that
the subjective value of a risky option corresponds to its
expected value. Both groups were therefore risk averse,
but gamblers less so than controls.
All drug effects are summarized in the right columns of

Table 4 (mean parameter changes between tolcapone
and placebo, standardized effect sizes (Cohen’s d), BF for
directional effects; see Materials and Methods). The pos-
terior distributions for the tolcapone-induced change for
boundary separation (Fig. 5A), non-decision time (Fig.
5B), and starting point (Fig. 5C) were all centered at zero
with effect sizes of |d|, 0.1. In contrast, under tolcapone,
there was evidence for a decrease in the maximum drift
rate (vmax; d = �1.84, BF=0.073), an increase in the value-
dependent drift-rate modulation (d=0.901, BF=7.51) and
for a relative increase in risky decision-making as indexed
by the hyperbolic discount rate h (d = –0.281, BF=0.20).
Tolcapone, thus, if anything, shifted risk preferences in the
gamblers toward risk neutrality.

Compensation between drift rate components
Because previous reports suggested a negative associ-

ation between vmax and vcoeff (Fontanesi et al., 2019), we
examined whether there might also be some compensa-
tion between these parameters in our data. We therefore
ran additional models where we fixed either drift rate com-
ponent under tolcapone to that parameter’s value under
placebo (that is, keeping either parameter constant while
allowing the other to vary according to the drug

Table 3: Model comparison of the DDMs, separately for the
two drug conditions

Model
Placebo
DIC Rank

Tolcapone
DIC Rank

DDM0 42,383 3 43,177 3
DDMlin 36,136 2 38,302 2
DDMS 30,354 1 32,240 1

Under both placebo and tolcapone, the data were best accounted for by a
model including a non-linear mapping from trial-wise value differences to drift
rates (DDMS).
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Figure 2. Top row, Group-level posterior distributions for pa-
rameter means under placebo (solid black line, A: softmax in-
verse temperature, B: log(h) [risk-taking]). The dashed blue lines
plot the group posterior distributions from the control group of
a previous study (n=19; Peters and D’Esposito, 2020). Center
row, Group level posterior distributions for tolcapone-induced
changes for each parameter. Bottom row, Posterior distribu-
tions of group differences between gamblers under placebo
from the present study and the control group from Peters and
D’Esposito (2020). The thin (thick) horizontal lines in the center
and bottom row indicate 95% (85%) highest density intervals.
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condition). When vmax was fixed to the placebo value,
there was no longer any evidence for a drug-induced
change in vcoeff (BF=1.36, as compared with BF=7.51 in
the full model). In contrast, when vcoeff was fixed to the
placebo value, the reduction in vmax was still observed,
although somewhat attenuated (BF=0.17 as compared
with BF=0.073 in the full model). Full results from these
models are available at OSF (https://osf.io/wtg89/).

Consistency of tolcapone effects across participants
We finally examined the consistency of the latter three

group effects across participants by overlaying individual
posterior distributions for the tolcapone effects over the
average group effects for parameters showing drug ef-
fects at the group level (Fig. 6A, vmax, B, vcoeff, C, log(h)).
Under tolcapone, 13/14 participants showed a mean re-
duction in the maximum drift rate vmax, 12/14 showed an
increase in the drift rate scaling vcoeff, and 9/14 showed a
decrease in log(h) (increase in risk-taking). For transpar-
ency, we have highlighted the three Met/Met genotype
participants in these plots (red lines), although the analy-
sis of genotype effects is underpowered.

Discussion
Gambling disorder is associated with impairments in

value-based decision-making, including increased tem-
poral discounting and reduced risk aversion (Wiehler and
Peters, 2015). Here, we tested whether risky decision-
making in gamblers could be attenuated by the COMT in-
hibitor tolcapone, which predominantly increases dopa-
mine levels in the frontal cortex. Choice data were
modeled in a hierarchical Bayesian scheme with the DDM
as the choice rule to account for both choices and reac-
tion time distributions. In contrast to our initial hypothesis,
if anything tolcapone increased risky decision-making
(small effect size) by shifting preferences in gamblers
more toward risk neutrality. Examination of the DDM pa-
rameters showed a reduction in the maximum drift rate
under tolcapone (large effect size) and an increase in the
value dependency of the drift rate (large effect size).
Together, these results suggest that tolcapone might tie
decision-making more tightly to subjective value differen-
ces, but that the subjective value of risky options is possi-
bly increased.

We used a modeling scheme based on the DDM, which
has recently gained some popularity in reinforcement
learning and value-based decision-making (Pedersen et
al., 2017; Fontanesi et al., 2019; Shahar et al., 2019;
Peters and D’Esposito, 2020; Wagner et al., 2020). As
was reported in previous work (Peters and D’Esposito,
2020), choice model parameters estimated via a standard
softmax function could be reliably reproduced using the
DDM as the choice rule. Posterior predictive checks re-
vealed that the best-fitting DDM reproduced individual sub-
ject reaction time distributions reasonably well in both drug
conditions. In keeping with previous work on DDM choice
rules (Fontanesi et al., 2019; Peters and D’Esposito, 2020),
we conducted a model comparison and evaluated both a
linear and nonlinear mapping from value differences to trial-
wise drift rates. The nonlinear DDMS fit the data better in
both drug conditions, confirming previous results of nonlin-
ear drift rate scaling.
The control group was not matched to the gamblers

on demographic variables, such that some caution is
warranted when interpreting the group differences.
However, it is interesting to see that gamblers under pla-
cebo exhibited substantially more premature responding
than controls (lower boundary separation) as well as fast-
er non-decision times, which could be expected given that
increased motor impulsivity is often observed in gambling
disorder (Chowdhury et al., 2017). Furthermore, an in-
crease in risky decision-making in gamblers versus con-
trols was ;4.4 times more likely, given the data, than a
reduction, which is in line with previous findings of in-
creased risk-taking in gamblers (Ligneul et al., 2012; Miedl
et al., 2012). Notably, both groups were overall risk averse
(log(h) was substantially.0), such that gamblers preferen-
ces were shifted more toward risk neutrality than controls.
Our results suggest small effects (|d|, 0.1) of tolcapone

on three parameters of the DDM: boundary separation,
non-decision time, and starting point (bias). This finding
suggests that overall response caution (as reflected in the
boundary separation parameter) and processes related to
motor preparation and/or stimulus processing (as re-
flected in the non-decision time) were largely unaffected
by tolcapone. In contrast, there was some evidence that tol-
capone modulated drift rate components, and if anything,
reduced probability discounting in gamblers, compared with
placebo. The latter effect was similarly observed for the
standard softmax choice rule and for the DDM. What mech-
anismmight drive the observed effects of tolcapone on risky
decision-making and value evidence accumulation? Our ap-
proach was motivated by the idea that tolcapone might at-
tenuate risky choice via an augmentation of prefrontal
cortex (top-down control) functions. The lateral prefrontal
cortex is implicated in cognitive control (Miller and Cohen,
2001; Szczepanski and Knight, 2014), and disruption of pre-
frontal cortex function can increase risk-taking and impulsiv-
ity (Knoch et al., 2006; Figner et al., 2010; Sellitto et al.,
2010; Peters and D’Esposito, 2016, 2020). Likewise, tolca-
pone has been shown to act through an enhancement of
prefrontal cortex activation and/or fronto-striatal interactions
(Kayser et al., 2012, 2017; Grant et al., 2013). However,
although the drug effect on risky choice was small, it was in
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the opposite direction, increasing risky choice rather than at-
tenuating it. Furthermore, the directionality and effect size of
the drug effect on log(h) showed some heterogeneity across
participants (Fig. 6C). In the absence of task-related imaging
data, drawing definite conclusions regarding themechanism
underlying these differential effects of tolcapone on risky
choice remains speculative, and individual genetic differen-
ces likely contribute to these variable results.
Similarly, it remains unclear through what exact mecha-

nism an increase of frontal dopamine levels might affect
the changes in value dependency of the drift-rate

observed in the present study. Ventromedial prefrontal
cortex is involved in coding for reward valuation during
learning and decision-making (Bartra et al., 2013; Clithero
and Rangel, 2014). It could thus be speculated that tolca-
pone might enhance such value representations, thereby
increasing the value dependency of trial-wise drift rates.
However, at the same time maximum drift rates were re-
duced under tolcapone, an effect that was consistent
across participants (see Fig. 6). Additional analyses re-
vealed that this might in part reflect at a trade-off between
vmax and vcoeff parameters in the model, such that reduced
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Figure 4. Posterior predictive plots of the drift diffusion temporal discounting model with nonlinear value scaling of the drift rate
(DDMS) for all 14 participants (blue: placebo, red: tolcapone). Histograms depict the observed RT distributions for each participant.
The solid lines are smoothed histograms of the model predicted RT distributions from 1000 individual subject datasets simulated
from the posterior of the best fitting hierarchical model. RTs for smaller-sooner choices are plotted as negative, whereas RTs for
larger-later choices are plotted as positive. The x-axes are adjusted to cover the range of observed RTs for each participant.
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vmax can be compensated for by increases in vcoeff under
some conditions. Such interactions require further study
in the use of diffusion model choice rules in larger
samples.
Finally, dopamine has different functions in different pre-

frontal cortex subregions (Robbins and Arnsten, 2009), such
that different dopamine-dependent cognitive functions
might exhibit different dose-response functions (Floresco,
2013) and thus be differentially modulated by tolcapone. A
thorough assessment of these complexities, including pro-
cess-dependent baseline effects and potential subregion-
specific effects of tolcapone will need to be more fully ad-
dressed in future studies (Kayser, 2019).
While we genotyped participants for the COMT Val158Met

polymorphism, drawing any conclusions regarding geno-
type effects in a small sample study such as the present
one is obviously highly problematic. On the other hand, not
reporting genotype data that is available would also seem

inappropriate given the previously suggested COMT geno-
type dependency of tolcapone effects on risk-taking
(Farrell et al., 2012). In their between-subjects study, Farrell
et al. (2012) reported increased risk aversion in Val/Val par-
ticipants under tolcapone, compared with a group of Met/
Met carriers. In contrast to that study, in our data set the
two participants showing the largest reduction in risky
choice under tolcapone were Met/Met carriers. This result
is in line with the frequent observation that dopamine ef-
fects on cognitive functions mediated by the prefrontal cor-
tex depend on baseline dopamine availability in an inverted
U-shaped fashion (Cools and D’Esposito, 2011). However,
in this model, Met/Met carriers exhibit a higher frontal do-
pamine level at baseline due to the COMT enzyme being
less active. Further COMT suppression (e.g., via tolcapone)
is then thought to move Met/Met subjects into an “over-
dosed” state, impairing performance relative to placebo
(Tunbridge et al., 2006; Cools and D’Esposito, 2011; Farrell
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Figure 5. Top row, Group-level posterior distributions for parameter means in the gamblers under placebo (n=14, solid black line)
and the Peters and D’Esposito (2020) controls (n=19, solid blue line). A, Boundary separation. B, Non-decision time. C, Bias. D,
vmax. E, vcoeff. F, log(h) [risk-taking]. The dashed red line in C denotes 0.5, i.e., a neutral bias. The dashed red line in E denotes zero,
i.e., no value modulation of the drift rate. Center row, Group level posterior distributions for tolcapone-induced changes for each pa-
rameter. Bottom row, Posterior distributions of group differences between gamblers under placebo from the present study and the
control group from Peters and D’Esposito (2020). The thin (thick) horizontal lines in the center and bottom row indicate 95% (85%)
highest density intervals.

Table 4: Summaries of group differences in DDM model parameters and of tolcapone effects on DDM model parameters

DDM model parameter Group difference Tolcapone effect
Mdiff d BF Mdiff d BF

Boundary separation (a) 0.966 1.15 328.0 0.063 0.089 1.81
Non decision time (t ) 0.328 0.784 14.87 –0.003 –0.031 0.815
Starting point / bias (z) –0.011 –0.211 0.403 0.004 0.088 1.47
Drift rate v (max) –0.236 –0.741 0.065 –0.166 –1.84 0.073
Drift rate v (coeff) –0.047 –0.865 0.181 0.069 0.910 7.51
Log(h) 0.575 0.344 4.40 –0.286 –0.281 0.20

In the summary of group differences in DDM model parameters, for each parameter, we report the mean group difference (controls – gamblersplacebo), standar-
dized effect sizes (Cohen’s d; see Materials and Methods), and BF testing for directional effects (Marsman and Wagenmakers, 2017; Pedersen et al., 2017). BF ,
0.33 indicate evidence for an increase in gamblersplacebo versus controls, whereas BF . 3 indicates evidence for a reduction (see Materials and Methods). In the
summary of tolcapone effects on DDM model parameters, for each parameter, we report the mean change under tolcapone versus placebo, standardized effect
sizes (Cohen’s d), and BF testing for directional effects. Here, BF . 3 indicates evidence for an increase under tolcapone, whereas BF , 0.33 indicates evidence
for a decrease.
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et al., 2012). This is not compatible with the substantial re-
duction in probability discounting observed for 2/3 Met/
Met carriers. However, as mentioned above, different cog-
nitive functions might show different functional forms of
dopamine baseline dependency (Floresco, 2013), which
would require much larger subject numbers to fully
evaluate.
There are several additional limitations of the present

study that need to be acknowledged. First, given the
small sample size, our findings require replication in larger
samples and disorders other than gambling disorder.
Second, although gender was relatively balanced in the
present study, which is often not the case in gambling dis-
order, we were underpowered to examine sex differences.
Third, we did not test a control group specifically matched
to the gamblers and rather focused on potential drug ef-
fects in this clinical sample. The aim of the project was to
examine the degree to which behavioral markers of gam-
bling disorder such as risk-taking and temporal discount-
ing (Kayser et al., 2017) could be improved by COMT
inhibition, but future studies could benefit from a more de-
tailed exploration of the effects of COMT inhibition on
risk-taking in healthy controls, as done in a previous study
for inter-temporal choice (Kayser et al., 2012). However,
to provide some reference for risk preferences in our par-
ticular sample of gamblers, we have compared their pa-
rameters under placebo to a group of and controls from a
previous study in medial orbitofrontal cortex lesion pa-
tients (Peters and D’Esposito, 2016, 2020). Finally, we fo-
cused on a simple single-parameter risky choice model
(hyperbolic probability discounting; Green and Myerson,
2004), because two-parameter models (Lattimore et al.,
1992; Ligneul et al., 2012) failed to converge in our data.
This is likely due to the somewhat limited range of probabil-
ities and amounts examined in our task. However, future
studies would benefit from a more detailed examination of,
e.g., elevation versus curvature of the probability weighting
function, as dopamine has been suggested to differentially
affect these processes (Burke et al., 2018; Ojala et al.,
2018).
Taken together, our data extend previous investigations

of modeling schemes that build on the DDM (Pedersen et
al., 2017; Fontanesi et al., 2019; Peters and D’Esposito,
2020; Wagner et al., 2020), by successfully applying this

approach for the first time in a clinical sample. While the
data are preliminary given the small sample size, they
suggest that tolcapone might impact aspects of value evi-
dence accumulation during risky choice. However, our
data do not support the idea that tolcapone attenuates
risk-taking in gambling disorder. These results extend and
complement previous examinations of the potential of
COMT inhibition in gambling disorder (Grant et al., 2013;
Kayser et al., 2017) by providing a comprehensive model-
based analysis of risky decision-making.
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