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Shankar S, Kayser AS. Perceptual and categorical decision mak-
ing: goal-relevant representation of two domains at different levels of
abstraction. J Neurophysiol 117: 2088–2103, 2017. First published
March 1, 2017; doi:10.1152/jn.00512.2016.—To date it has been
unclear whether perceptual decision making and rule-based categori-
zation reflect activation of similar cognitive processes and brain
regions. On one hand, both map potentially ambiguous stimuli to a
smaller set of motor responses. On the other hand, decisions about
perceptual salience typically concern concrete sensory representations
derived from a noisy stimulus, while categorization is typically
conceptualized as an abstract decision about membership in a poten-
tially arbitrary set. Previous work has primarily examined these types
of decisions in isolation. Here we independently varied salience in
both the perceptual and categorical domains in a random dot-motion
framework by manipulating dot-motion coherence and motion direc-
tion relative to a category boundary, respectively. Behavioral and
modeling results suggest that categorical (more abstract) information,
which is more relevant to subjects’ decisions, is weighted more
strongly than perceptual (more concrete) information, although they
also have significant interactive effects on choice. Within the brain,
BOLD activity within frontal regions strongly differentiated categor-
ical salience and weakly differentiated perceptual salience; however,
the interaction between these two factors activated similar frontopa-
rietal brain networks. Notably, explicitly evaluating feature interac-
tions revealed a frontal-parietal dissociation: parietal activity varied
strongly with both features, but frontal activity varied with the
combined strength of the information that defined the motor response.
Together, these data demonstrate that frontal regions are driven by
decision-relevant features and argue that perceptual decisions and
rule-based categorization reflect similar cognitive processes and acti-
vate similar brain networks to the extent that they define decision-
relevant stimulus-response mappings.

NEW & NOTEWORTHY Here we study the behavioral and neural
dynamics of perceptual categorization when decision information
varies in multiple domains at different levels of abstraction. Behav-
ioral and modeling results suggest that categorical (more abstract)
information is weighted more strongly than perceptual (more con-
crete) information but that perceptual and categorical domains interact
to influence decisions. Frontoparietal brain activity during categori-
zation flexibly represents decision-relevant features and highlights
significant dissociations in frontal and parietal activity during decision
making.

categorization; perceptual decision making; frontal cortex; parietal
cortex; diffusion model

FUNDAMENTALLY, all organisms must be able to link a poten-
tially large number of stimuli with a smaller number of goal-
relevant responses. In studies of such stimulus-response map-
pings, perceptual decision making (PDM) has typically been
conceptualized as the ability to define a course of action based
on the evidence accumulated over a noise-degraded stimulus.
In contrast, studies of rule-based categorization (RBC) have
typically been defined by varying how far a perceptually salient
stimulus lies from a category boundary. These differences
between the two types of decisions, most overtly in level of
abstraction, have been emphasized despite the fact that both
sets of studies have used overlapping stimuli, ranging from
simple features like color, motion, and size (PDM: Gold and
Shadlen 2007; Kayser et al. 2010b; Stanford et al. 2010; RBC:
de Gardelle and Summerfield 2011; Freedman and Assad 2006;
White et al. 2012) to more complex stimuli such as faces,
houses, cars, and animals (PDM: Heekeren et al. 2008; Phili-
astides and Sajda 2006; Tremel and Wheeler 2015; RBC:
Freedman et al. 2001; Scholl et al. 2014). Moreover, brain
regions participating in PDM and RBC have both been iden-
tified primarily by finding areas that modulate their activity as
a function of feature salience (Freedman and Miller 2008;
Heekeren et al. 2004; Kayser et al. 2010a; Roitman and
Shadlen 2002; Seger et al. 2015; Tremel and Wheeler 2015).

In most such studies, choice-relevant information is avail-
able from only a single source. For example, variable percep-
tual salience, such as motion coherence contaminated by vary-
ing levels of perceptual noise, is examined only in the context
of highly salient categorical information, such as opposing
leftward and rightward motion (Kayser et al. 2010b), or,
alternatively, variable categorical salience, as defined by dif-
ferent abstract shapes, is present in the setting of highly salient,
noiseless visual stimuli (Gauthier and Tarr 1997). Thus how
multiple domains of information at differing levels of abstrac-
tion contribute to decision making remains an active area of
investigation. Recently, novel categorization studies have be-
gun to address the issue of multiple input sources by manipu-
lating the average color (red/blue) and shape (circle/square) of
a multiple-element array that formed the basis for a categorical
color-shape decision (de Gardelle and Summerfield 2011; Mi-
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chael et al. 2015), or they have independently varied distance
from a category boundary and distance from a prototype (Seger
et al. 2015). However, the important questions addressed in
these studies required all individual elements within the array
to have high perceptual salience, whereas the variabilities were
both in the categorical domain—e.g., in the former study,
variability in the mean was defined by distance from the
category boundary and variability in the variance of the ele-
ments was defined about that mean. Here we sought to uncou-
ple salience in the mean stimulus strength from distance to the
category boundary in order to introduce variability into distinct
domains that differ in abstraction but both influence choice:
categorical/more abstract (i.e., distance from the category
boundary) and perceptual/less abstract (i.e., mean stimulus
strength).

To this end we adapted the well-established PDM paradigm
utilizing a random-dot kinematogram (Gold and Shadlen 2007;
Heekeren et al. 2006; Kayser et al. 2010b) to a categorization
framework. Critically, we varied both the direction of dot
motion relative to the category boundary (variable categorical
salience) and the coherence of dot motion (variable perceptual
salience). Additionally, we used the diffusion model, a well-
known computational model successfully applied to model
choice behavior in a variety of similar tasks (Kayser et al.
2010b; Palmer et al. 2005; Ratcliff and McKoon 2008; White
et al. 2012), to predict the relative importance of categorical
and perceptual information. In such models evidence accumu-
lates over time, at a rate determined by feature salience, until
a threshold is reached and a choice is made. We predicted that
while both domains would interact to determine choice, cate-
gorical information would have greater weight within the
accumulator model, as this and similar tasks ultimately rely
upon a categorical discrimination (e.g., left or right of a
category boundary) to generate a categorical response (e.g., left
or right button press).

Similarly, we predicted that categorical and perceptual sa-
lience would be represented differentially within the brain,
depending on their relative importance in determining the
response (Kayser et al. 2010a). In accord with previous results
relating feature salience and parametric blood oxygen level-
dependent (BOLD) amplitudes in PDM (Hebart et al. 2012; Ho
et al. 2009; Kayser et al. 2010b), we hypothesized that frontal
and parietal activity would be modulated in negative paramet-
ric fashion by salience in the most decision-relevant feature.
Specifically, BOLD amplitude would increase with decreasing
feature salience, be it decreasing motion coherence or decreas-
ing distance from category boundary, to the extent that the
feature in question was relevant to the response. In contrast,
when faced with a feature that poorly determined the response
and was therefore less relevant, the BOLD response to that
feature would demonstrate a positive parametric effect, in
keeping with our previous work (Kayser et al. 2010a).

Based on our prediction that categorization would be
weighted more heavily, we anticipated that a negative para-
metric effect would be seen more strongly in the parametric
variation of categorical information (Seger et al. 2015; White
et al. 2012) than perceptual information. However, we ex-
pected that under certain conditions this effect could vary.
Under conditions of uniformly high categorical salience, for
example, when perceptual salience would drive choices, such
negative parametric activity would vary primarily with percep-

tual salience, while under conditions of absent categorical
salience activity within frontal regions would vary little with
perceptual salience, if at all (Kayser et al. 2010a). Consistent
with other work on multisensory integration (Senkowski et al.
2011; Stein et al. 2009; Stevenson et al. 2012), this strong
interaction between categorical and perceptual salience would
reflect the important flexibility of frontal networks to selec-
tively represent goal-relevant features at different levels of
abstraction, especially those that are most proximal to the
decision. More generally, this interaction would support the
idea that perception is a sensorimotor process (van Atteveldt et
al. 2014).

MATERIALS AND METHODS

Ten subjects (ages 18–42 yr; 4 men, 8 women) participated in the
study and gave written informed consent to participate in a protocol
approved by the Committee for the Protection of Human Subjects at
the University of California, Berkeley. All subjects had normal neural
anatomy as assessed by a neurologist (A. S. Kayser), were right-
handed, and had normal or corrected-to-normal vision. Before scan
sessions, subjects were trained on the task for a minimum of five
1.25-h sessions to reduce learning effects in the scanner. Once trained,
all subjects underwent four 1.5-h fMRI sessions, each of which
consisted of six runs of 64 trials for a total of 4 � 6 � 64 � 1,536
trials per subject.

Subjects performed a visual dot-motion task in which they viewed
a variable proportion of coherently moving dots on a background of
randomly moving dots (Fig. 1). On any given trial, the dots could
move in 1 of 16 different directions; subjects were required to
categorize the direction of motion as either leftward or rightward of a
boundary, which was an oblique line inclined at either 45° or 135°
from the horizontal. We used oblique axes rather than the cardinal
axes because motion direction is highly discriminable near the cardi-
nal axes (oblique effect: Ball and Sekuler 1987; Matthews and Welch
1997) and, therefore, restricts the range of categorical uncertainty that
can be created.

To study the effects of perceptual and categorical salience on
subjects’ choices, independent parametric manipulations of each do-
main were introduced. Perceptual salience was altered by changing
dot-motion coherence: salience decreased as motion coherence de-
creased. Categorical salience was manipulated by varying the direc-
tion of motion of the dots: salience decreased as the coherently
moving dots moved closer to the boundary line. Subjects were
instructed to report their choice via a button press as quickly and
accurately as possible, using the index or middle finger of their right
hand. Runs with over six aborted trials (in which subjects did not
respond within the allotted duration) were excluded from subsequent
analyses. One subject was excluded from the study because of a high
percentage of aborted trials in two sessions. Specifically, this subject
responded outside the response window in �20% of trials within each
run in two scanner sessions, rendering both the behavior and the
BOLD data problematic. Consequently, he was excluded from both
the behavioral and imaging analyses. Nine runs were excluded in all
from the remaining nine subjects.

The category boundary was indicated to subjects at the start of each
block for a period of 5 s, at the end of which the boundary was
removed and the trials commenced. The boundary remained un-
changed over a block of trials but alternated between blocks. Motion
coherence as well as direction of motion were consistent over a single
trial and were varied independently of each other across trials. At the
beginning of each trial, a bright central fixation cross was dimmed to
indicate onset of the dot-motion stimulus. The stimulus was presented
for 2.5 s and subjects were required to respond within that duration, in
accord with previous studies in the laboratory (Kayser et al. 2010a,
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2010b). At the end of each trial the fixation cross brightened for a
jittered intertrial interval of 2–12 s.

In the training sessions conducted outside the scanner, subjects
were trained on five different dot-motion coherences (0%, 6%, 12%,
25%, and 100%) and nine different distances from category boundary
(0°, �12°, �45°, �78°, �90°). In the initial two training sessions,
subjects were provided with auditory feedback on their performance
on individual trials. Thereafter, feedback was discontinued. After the
training sessions, psychometric curves were constructed and interme-
diate values of dot-motion coherence and distance from category
boundary were ascertained in order to obtain an intermediate accuracy
value of 80%. Subsequently, during the scanner sessions, subjects
were presented with dots that moved with four levels of coherence
[0%, 25%, 100%, and 1 intermediate coherence (IC) ranging from
12% to 15%] at nine distances from either side of the category
boundary {0°, �45°, �90°, and 2 intermediate distances (IDs)
between 0° and �45° (i.e., �ID, ranging from 8° to 20°) and between
�45° and �90° [i.e., �(90° � ID)]}. Two subjects were assigned two
IC values because they over- and underperformed at 25% coherence.
These subjects performed the task at 0%, 4%, 10%, and 100% and
0%, 25%, 35%, and 100% motion coherence, respectively.

For fMRI sessions, the presentation order of dot-motion trials was
computed with OptSeq (http://surfer.nmr.mgh.harvard.edu/optseq/)
(Dale 1999). Stimuli were programmed in MATLAB in the Psych-
Toolbox environment (Brainard 1997; Pelli 1997), adapted from our
previous code. Dot density was fixed at 16.7 dots·°�2·s�1, and dot
velocity was fixed at a single value of 5°/s to ensure that motion
energy was uniform across levels of motion coherence. Blurring
effects (in which consecutive placements of a single dot were seen as
forming a line) were avoided by the serial presentation of three
interleaved subsets, with each frame containing only one of the
subsets. To ensure that dots were initially placed evenly across the
viewing aperture, we rejected initial dot placements that showed
evidence for an unusually skewed starting configuration. Specifically,
we rejected initial random dot configurations that showed a �95%
chance of deviating from the expected �2 distribution for the fre-
quency of dots over a 4 � 4 grid covering the viewing aperture (note
that the grid was not displayed on the screen). Once set in motion, dots
that moved outside the aperture were repositioned on the opposite side

of the window to prevent them from collecting in any particular region
of the aperture over time. To identify overall motion direction,
subjects were instructed to pay attention to the entire field of dots, as
the interleaved presentation and variable assignment of motion vec-
tors rendered strategies focusing on any single dot ineffective.

Behavioral Modeling

We used a proportional rate diffusion model as defined by Palmer
and colleagues (Palmer et al. 2005) to model behavior in the catego-
rization task. The impetus was to identify how information from two
domains, one more concrete (perceptual) and the other more abstract
(categorical), combined to form a decision. The diffusion model
hypothesizes that decision making consists of a process of evidence
accumulation for each of the alternative decisions available to a
subject. When a threshold level of evidence is reached for one of the
decisions, the subject generates a corresponding response. Impor-
tantly, the model permits one to fit both reaction time (RT) and
accuracy data with a single set of parameters, thereby simultaneously
constraining both RT and accuracy variables and providing a parsi-
monious and theoretically meaningful explanation for the data.

The Palmer model, derived from the diffusion model of Ratcliff
(Ratcliff and McKoon 2008), consists of four variables: 1) A=, bearing
on the decision threshold; 2) x, representing stimulus salience (see
below); 3) k, a proportionality constant (the “sensitivity”) linking
stimulus salience to the drift rate � (drift rate � � kx); and 4) TR, the
mean residual time in seconds, representing a fixed processing dura-
tion independent of evidence accumulation (e.g., for low-level sensory
processing or implementation of motor commands). Parameters were
derived for each subject with an iterative procedure designed to
optimize the log-likelihood of the diffusion model fit (Palmer et al.
2005). Notably, this model produces parameter fits that incorporate all
trials, and thus single-trial estimates are not generated.

Three versions of the model were implemented. In the low-level
interaction model (Interaction model), A=, k, and TR were assumed
constant across all stimulus conditions, while x assumed a value that
represented the interaction of perceptual and categorical information.
This model embodies the assumption that perceptual and categorical
information interact to provide the input to a consistent accumulator

Fig. 1. Behavioral task. A: task schematic. On each trial
the subject pressed a button to indicate whether the
overall movement of a random dot kinematogram
(RDK) was to the left or right of an oblique boundary
line. The boundary line was presented for 5 s at the start
of each block of trials. Each trial started with a central
fixation cross that dimmed after 2–12 s, after which the
RDK appeared on the screen for 2.5 s. The subject
responded within this duration. B and C: perceptual (B)
and categorical (C) uncertainty were introduced to ma-
nipulate salience. Perceptual salience was manipulated
via the introduction of noise into motion coherence,
while categorical salience varied with distance of dot
motion from the category boundary.
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process. Thus the behavior of each subject was fit by finding 20
different values of x—reflecting the 20 different stimulus combina-
tions derived from 4 coherence values and 5 distance values (col-
lapsed across positive and negative angles)—and one each of A=, k,
and TR. In the two high-level interaction models (Coherence and
Distance models), values for x representing motion coherence (or
distance from category boundary) were obtained by fitting behavior at
the highest distance from category boundary (or motion coherence).
These values of x were then used at all other distances from category
boundary (or motion coherence) as well, while A=, k, and TR were fit
anew for each distance from category boundary (or motion coherence)
in a two-step process. First, for each combination of A= and TR, the
best k was found; then, the best fitting combination of A= and TR was
calculated to arrive at the best fit values of A=, k, and TR. This model
embodies the assumption that the accumulator process itself may vary
quantitatively based on the feature being integrated; we use it to
determine which domain informs stimulus strength (x) and which
exerts an additional modulating influence (k) on the decision. This
multiplication, taken directly from the Palmer model itself (Palmer et
al. 2005), represents the simplest type of interaction between two
parameters that does not incorporate other constraints on its precise
form (van Eeuwijk 1995). Thus each subject’s behavior was fit by
using 4 (or 5) values of x to represent coherence (or distance) along
with 5 (or 4) values each of A=, k, and TR. Table 1 provides ranges of
parameters obtained for all model versions, across subjects. We used
the corrected Akaike information criterion (AICc; Anderson et al.
1994; Hurvich and Tsai 1989) to compare the three versions of the
model implemented. The AICc is defined as AICc � AIC � 2(k �
1)(k � 2)/(n � k � 2), where AIC � 2k � 2lnL, k is the number of
estimated parameters in the model, n is the sample size, and L is the
maximum likelihood for the model. The AICc is recommended over
the AIC when n/k � 40 for the model with the largest k value
(Burnham and Anderson 2004) and permits the comparison of models
constructed with different numbers of parameters for a smaller sample
size. To evaluate whether AICc values were significantly different
between the alternative versions of the model across subjects, we used

the Wilcoxon signed-rank test, as the distribution of AICc values does
not necessarily permit the application of standard parametric tests.

MRI Scanning

MRI scanning was conducted on a Siemens MAGNETOM Trio
3-T MR scanner at the Henry H. Wheeler, Jr. Brain Imaging Center at
the University of California, Berkeley. Images were collected with a
12-channel phased-array coil. Anatomical images consisted of 160
slices acquired with a T1-weighted MP-RAGE protocol (TR � 2,300
ms, TE � 2.98 ms, FOV � 256 mm, matrix size � 256 � 256, voxel
size � 1 � 1 � 1 mm). Functional images consisted of 32 slices
acquired with a single-shot gradient echoplanar imaging protocol in a
contiguous order (TR � 1,800 ms, TE � 23 ms, FOV � 210 mm,
matrix size � 70 � 70, voxel size � 3 � 3 � 3 mm). A projector
(Avotec SV-6011, http://www.avotecinc.com/) was used to display
the image on a translucent screen placed within the scanner bore
behind the head coil. A mirror was used to allow the subject to see the
display. The distance from the subject’s eye to the screen was 29 cm,
and the presented images subtended a visual angle of 7.5°. Subjects’
responses were recorded with an MRI-safe fiber-optic response pad
(Inline model HH-1x4-L, http://www.crsltd.com).

fMRI Preprocessing

fMRI preprocessing was performed with both AFNI (https://afni.
nimh.nih.gov/) and FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Func-
tional images were converted to four-dimensional NIfTI format and
corrected for slice timing offsets. Motion correction was carried out
with the AFNI program 3dvolreg, with the reference volume set to the
mean image of the first run in the series. Images were then smoothed
with a 5-mm FWHM Gaussian kernel. Coregistration was performed
with the AFNI program 3dAllineate using the local Pearson correla-
tion cost function optimized for fMRI-to-MRI structural alignment.
The subsequent inverse transformation was then used to warp the
anatomical image to the functional image space. Anatomical images
were normalized with the FSL program fnirt to a standard volume
(MNI_N27) available from the Montreal Neurological Institute (MNI;
https://www.mcgill.ca/bic/). The same normalization parameters were
later applied to native-space statistical maps as necessary for the
generation of group statistical maps (see below).

Univariate Analysis

To address a series of hypotheses, we carried out a number of
voxelwise fMRI statistical analyses for each subject using the general
linear model framework implemented in the AFNI program 3dDecon-
volve. The overall effects of motion coherence were assessed by
modeling the four coherence values with separate regressors, each of
which was derived by convolving a gamma probability density func-
tion (peaking at 6 s) with a vector of stimulus onsets for each
condition. Effects of distance from category boundary were similarly
assessed by modeling the five unique distance values (0°, ID, 45°,
90° � ID, 90°) with separate regressors. Tests of linear trends were
carried out for each voxel using the coherence (distance from bound-
ary) vector transformed to zero mean and a sum of squares equal to 1
(Kayser et al. 2010b) and then applied to the estimated �-coefficients
computed for each motion coherence (distance from boundary) value.
The resulting values were mapped to the MNI template and subjected
to group-level analyses. Mapwise significance (P � 0.05, corrected
for multiple comparisons) was determined by applying a cluster size
correction (20 voxels) derived from the AFNI programs 3dFWHMx
and 3dClustSim on data initially thresholded at a value of P � 0.001,
uncorrected. Only correct trials were evaluated for all univariate
analyses, with the exception of the accuracy map. Both these and
other maps were masked by the positive main effect of task (P � 0.05,
uncorrected) to remove areas that deactivated during task perfor-

Table 1. Parameter ranges across subjects for each
model version

Interaction Model Distance Model Coherence Model

x
lo 0.17 (0.11–0.19) 0.15 (0.07–0.23) 0.11 (0.05–0.19)
hi 2.51 (2.13–2.89) 3.03 (2.61–4.83) 4.83 (3.11–5.53)

k
lo 0.88 (0.75–0.92) 0.06 (0.03–0.06) 0.06 (0.04–0.09)
hi 0.7 (0.43–0.78) 1 (0.39–1.5)

A=
lo 1.12 (1.12–1.12) 1.08 (1.08–1.08) 1.08 (1.08–1.08)
hi 1.2 (1.12–1.2) 1.13 (1.08–1.31)

TR

lo 0.31 (0.22–0.35) 0.28 (0.26–0.85) 0.33 (0.2–0.37)
hi 0.34 (0.2–0.39) 0.46 (0.36–0.67)

Values are medians (interquartile ranges) for each model parameter (x,
stimulus strength; k, sensitivity; A=, decision threshold; TR, nondecision time)
for the 3 model versions, where lo and hi refer to lowest and highest stimulus
salience levels. For the Interaction model, x (lo) and x (hi) refer to the lowest
and highest levels of combined perceptual and categorical salience, respec-
tively. For this model, a single value of k, A=, and TR was subsequently fit
across all combinations of perceptual and categorical salience (see MATERIALS

AND METHODS). For the Distance model, x (lo) and x (hi) refer to the lowest and
highest levels of categorical salience, respectively. For the other parameters in
this model, lo indicates the lowest and hi indicates the highest level of
perceptual salience. Conversely, for the Coherence model x (lo) and x (hi) refer
to the lowest and highest levels of perceptual salience, respectively. For the
other parameters in this model, lo indicates the lowest and hi indicates the
highest level of categorical salience.
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mance. Importantly, the definition of this mask does not incorporate
information about, and is therefore independent of, task demands.

Split parametric map generation. Split parametric maps were
generated in a similar fashion as the procedures noted in the section
above. However, tests of linear trends of motion coherence (distance
from category boundary) were now assessed at each value of distance
from category boundary (motion coherence).

Accuracy map generation. To identify areas showing parametric
representation of subject accuracies, we rank-ordered the mean accu-
racies in the 20 stimulus combinations into four separate bins. We
then averaged the accuracies within each bin, vector-transformed the
average accuracies of all bins to zero mean and a sum of squares equal
to 1, and applied the weights to the estimated �-coefficients computed
for the corresponding stimulus combination.

ANOVA analysis. An ANOVA was performed with motion coher-
ence and distance from boundary comprising the fixed factors and
subjects the random factor.

ROI Selection

To confirm the findings of the whole brain analyses, we also
performed region of interest (ROI) analyses to evaluate whether
parametric effects could be seen at the level of the BOLD time
courses. To avoid an ROI selection bias, 35% of the fMRI data
collected (8 individual task runs per subject) was analyzed indepen-
dently. To generate ROIs, we repeated the univariate main-effects
analysis with the reduced data set, masked by the positive main effect
of task. Specifically, after single-subject main-effects maps were
normalized to MNI space and a group univariate analysis was per-
formed, local maxima were defined on the main-effects group map
(thresholded at P � 0.005, uncorrected). Each defined maximum
served as the center of a sphere with a diameter of 8 mm. In cases in
which neighboring spheres showed any overlap, the sphere with the
lesser maximum was excluded. After reverse normalizing the ROIs to
each subject’s native space, we selected the top 15 voxels from the
training data set within each ROI that demonstrated a positive main
effect of task. Each of these sets of voxels was then applied to the
primary (and independent) data set. These selection criteria were
useful for a number of reasons (Kayser et al. 2010a). First, by
constraining ROI selection by the positive main effect of task, we
ensured that we were not reporting areas that deactivated during task
performance (see also Ho et al. 2009; Tosoni et al. 2008). Second,
voxel selection was not based on a significant parametric response to
either motion coherence or distance from category boundary. This
choice ensured that we were not restricting ourselves to areas that
represented stimulus feature alone. Finally, and most importantly,
these voxels were selected from an independent data set totaling 72
runs for our subjects. Thus our selection criteria did not influence, and
were not influenced by, the data ultimately analyzed.

BOLD Time Course Estimation

Estimates of the hemodynamic responses starting at the onset of the
stimulus phase were calculated for each combination of motion
coherence and distance from category boundary. To produce an
unbiased estimate of the time course, we applied a deconvolution
approach to the main data set using piecewise B-spline basis functions
(Saad et al. 2006) separated by 100-ms intervals for 20 s after onset
using AFNI’s 3dDeconvolve command. Since trial onset times were
not synchronous with the transistor-transistor logic (TTL) pulse,
across the entire run we were able to sample the time course at
different points. The peak amplitude was defined as the first maximum
in the average time course after stimulus onset, and time to peak was
considered the time from onset to this maximum amplitude.

RESULTS

Behavior on Categorization Task

To study the effects of perceptual and categorical salience on
subjects’ choices, we asked nine subjects to categorize the
direction of motion of a dot-motion kinematogram as left or
right of an oblique category boundary (Fig. 1A). Perceptual
salience was altered by changing dot-motion coherence: sa-
lience increased as motion coherence increased (Fig. 1B).
Categorical salience resulted from the direction of motion of
the dots: salience increased as the direction of motion moved
further away from the boundary line (Fig. 1C).

From behavioral training sessions performed outside the
scanner, we selected one intermediate value for motion coher-
ence (distances from category boundary) such that at the most
salient distance from category boundary (coherence) subjects
spanned the full range of behavior, from chance (50%) to
100% with an intermediate accuracy of 80% (IC, 4–25%; ID,
8–20°). Before pooling subject data to study group behavior,
we compared accuracy across subjects for the intermediate
values of motion coherence and distance from category bound-
ary. Subjects did not deviate from the expected accuracy of
80% at the IC/ID from boundary [IC: t(8) � �0.43, P � 0.68;
ID: t(8) � �0.08, P � 0.94].

Figure 2 shows behavioral data pooled across nine subjects
as a function of distance from category boundary (Fig. 2, A and
B) and motion coherence (Fig. 2, C and D). When salience was
low in either domain, accuracy was at chance irrespective of
stimulus strength in the other domain (Fig. 2, A and C, light
gray lines). As salience increased, mean accuracy increased
and RT decreased (Fig. 2, darker gray lines). Moreover, for a
given level of salience in one domain, accuracy increased and
RT decreased as salience increased in the other domain. A
three-way mixed-effects ANOVA (coherence � distance from
boundary � subject, with subject as a random effect) con-
firmed the interaction between perceptual and categorical in-
formation on both accuracy [F(12,96) � 41.05, P � 10�9] and
RT [F(12,96) � 25.52, P � 10�9]. This interaction was not
driven solely by the zero-salience conditions. When this three-
way mixed-effects ANOVA was repeated while excluding all
zero-motion coherence and zero-category distance conditions,
the resulting interaction remained strongly significant for both
accuracy [F(6,48) � 6.4, P � 0.001] and RT [F(6,48) � 20.62,
P � 10�9]. This interaction was also not driven by the
highest-salience conditions for both features. When the
ANOVA was again repeated while excluding both the zero-
and highest-salience conditions for motion coherence and cat-
egory distance (leaving only 6 of the 20 feature combinations),
RT still showed a significant interaction [F(2,16) � 8.12, P �
0.0037], while the interaction effect for accuracy reached trend
significance [F(2,16) � 3.25, P � 0.066].

To determine whether perceptual and categorical informa-
tion differentially influenced behavior, we looked in greater
detail at the very low- and very high-salience conditions. As
expected, accuracy and RTs were modulated differentially at
low vs. high salience but did not vary by domain of informa-
tion. As categorical salience increased at high perceptual sa-
lience (100% coherence; Fig. 2, A and B, black lines), accuracy
ranged from chance (50%) for each subject to 100% while
mean RT decreased by an average of 557 ms across all subjects
[t(8) � 10.07, P � 10�5]. As perceptual salience increased at
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high categorical salience (90° from category boundary; Fig. 2,
C and D, black lines), accuracy again ranged from 50% for
each subject to 100% while mean RT decreased by an average
of 794 ms across all subjects [t(8) � 7.62, P � 10�4]. The
differential decrease in mean RT between the perceptual and
categorical conditions was not significant [t(8) � �1.91, P �
0.09].

In contrast, as perceptual salience increased at low categor-
ical salience (e.g., dots moving along the category boundary),
mean RT decreased by 256 ms. Nonetheless, this decrease was
not significant [Fig. 2D, light gray line; t(8) � 2.18, P � 0.06];
neither was the differential decrease in RT between the per-
ceptual and categorical conditions [t(8) � �1.91, P � 0.09].
These data demonstrate that both perceptual and categorical
information modulate behavior in similar ways at different
levels of salience.

Drift Diffusion Model and Domain Interaction

Despite the similarities in their overall effects on accuracy
and RT, perceptual and categorical information potentially
operate at different levels of abstraction, with motion coher-
ence information representing a more concrete, stimulus-
driven percept and categorical distance information being more
abstract. Beyond the fact that the two domains interact to
produce a decision, we wanted to investigate whether either
domain influenced the decision more than the other. To this
end we modeled behavior on the task using the proportional
rate drift diffusion model defined by Palmer and colleagues
(Palmer et al. 2005). We implemented three versions of the
model that differed in the way perceptual and categorical
information combined to determine the drift rate.

First, to directly evaluate the potential influence of the
interaction between motion coherence and category distance,

we defined the diffusion model so that drift rate was a function
of each unique combination of perceptual and categorical
salience (Interaction model). Thus in this version of the model
we fit 20 different drift rates, corresponding to 1 drift rate for
each combination of 4 motion coherences and 5 (absolute)
distances from category boundary for each subject. This ver-
sion of the model fit behavior quite well (Fig. 3A, solid lines).
To confirm that the drift rates represented domain interactions,
we fit a regression model separately for each subject with
model drift rate as the dependent variable and motion coher-
ence, distance from category boundary, and their interaction as
independent variables. The interaction variable was significant
(P � 0.05) for all subjects, whereas the separate domain
variables were not significant for any subject (Table 2, Inter-
action model).

To identify whether one domain fit choice behavior better
than the other—specifically, whether distance from category
boundary was more relevant than motion coherence—we im-
plemented two additional versions of the model in which the
stimulus strength component (x) of the drift rate was fixed by
one domain and the proportionality constant (k) comprising the
drift rate was determined by the other domain (see MATERIALS

AND METHODS). Model fits of the variant in which x was
determined by categorical information (Distance model) are
shown in Fig. 3B, while fits of the variant in which x was
determined by perceptual information (Coherence model) are
shown in Fig. 3C. Among all variants, the Distance model fit
the data best, as confirmed by the lowest AICc score (Interac-
tion: 1,877.9, Distance: 1,251.7, Coherence: 1,662.8). These
differences between the AICc scores were significant across
subjects for the Distance model compared with the other two
models (Distance � Coherence: P � 0.002; Distance �
Interaction: P � 0.002) but not for the Coherence model vs. the

Fig. 2. Behavior on the categorization task:
accuracy (A and C) and reaction times (RTs;
B and D) pooled from 9 subjects plotted as a
function of distance from category boundary
(A and B) and motion coherence (C and D).
Progressively darker shades of gray indicate
progressively higher coherence (A and B)
and category distance (C and D) values. In A
and B: ID, intermediate distance from cate-
gory boundary (8–20°); In C and D: IC,
intermediate motion coherence (4–25%, but
see MATERIALS AND METHODS). Error bars
represent SEs.

2093PERCEPTUAL AND CATEGORICAL DECISION MAKING

J Neurophysiol • doi:10.1152/jn.00512.2016 • www.jn.org

 by 10.220.33.1 on June 1, 2017
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


Interaction model [Coherence � Interaction: P � 0.1]. As with
the Interaction model, we also fit a regression model to the drift
rate parameters obtained from the Distance and Coherence
models. In both cases, regression analysis revealed an addi-
tional significant (P � 0.05) interaction of the two domains in
all subjects (Table 2). Significant effects of categorical infor-
mation were also observed in a small subset of subjects in both
model variants (Table 2, Distance, Coherence models). That
the Distance model produces the best fit for the data suggests
that categorical information is weighted more strongly than
perceptual information. However, regression fits indicate, as
expected, that both features are informative, in that the two
domains interact to produce the final choice.

Presumably, interactions between domains are most impor-
tant when salience in either domain is low. To address this
possibility, we refit the models after excluding the conditions
in which perceptual or categorical salience was absent. Here
too, the Distance model performed best and the Coherence
model the worst, as shown by the AICc scores (Interaction:
1,185.6, Distance: 798.2, Coherence: 1,329.5). These differences
between the AICc scores remained significant for the Distance
model compared with the other two models (Distance � Coher-
ence: P � 0.002; Distance � Interaction: P � 0.002) but not for
the Coherence model vs. the Interaction model (Coherence �
Interaction: P � 0.82). Individual-subject domain interactions
now retained significance (P � 0.05) in only a subset of subjects
(Table 2).

However, it is possible that the differing fits of the Distance
and Coherence models might have been biased by the greater
number of distance values. To address this possibility, we reran
the models while separately excluding the highest two levels
(90° � ID and 90°) of distance from the category boundary,
thereby matching the number of distance and coherence values.
Lower values of the AICc for the Distance model were again
seen when we excluded only the 90° � ID condition (Distance:
1,273, Coherence: 1,486.4, Interaction: 1,635.2) or only the
90° condition (Distance: 1,288.9, Coherence: 1,350.5, Interac-
tion: 1,601.8). When the 90° � ID condition was excluded,
these differences between the AICc scores were significant for
all model comparisons (Distance � Coherence: P � 0.02;
Distance � Interaction: P � 0.004; Coherence � Interaction:
P � 0.048). When the 90° condition was excluded, these
differences between the AICc scores were lower but no longer
significant for Distance vs. Coherence (Distance � Coherence:

Fig. 3. Proportional rate diffusion model fits. Model fits of low-level Interaction model (A), Distance model (B), and Coherence model (C) (see MATERIALS AND

METHODS for model details). Behavior on the categorization task, as shown in Fig. 2, A and B, is overlaid on each model plot (dashed lines). Top: accuracy.
Bottom: RT. The color scheme is the same as that of Fig. 2. Error bars represent SEs.

Table 2. Model regression values

Model

Domain

Perceptual
Median �

Categorical
Median �

Interaction
Median �

All perceptual and categorical salience levels included
Interaction 0.094 (0) 0.436 (0) 2.004 (9)
Distance 0.237 (0) 0.554 (3) 1.635 (9)
Coherence 0.355 (0) 0.236 (1) 3.069 (9)

Lowest perceptual and categorical salience levels excluded
Interaction 0.906 (1) 1.246 (1) 3.043 (3)
Distance 0.356 (0) 0.611 (0) 0.938 (2)
Coherence 0.373 (0) 0.356 (0) 2.605 (3)

Values are median regression coefficients obtained by regressing model drift
rates against motion coherence (perceptual), distance from category boundary
(categorical), and their interaction with all 20 stimulus combinations included
and with lowest-salience conditions in both domains excluded, with numbers
of subjects (of 9) exhibiting significant regression coefficients in parentheses.
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P � 0.29) but remained so for the other two comparisons
(Distance � Interaction: P � 0.01; Coherence � Interaction:
P � 0.002). Overall, the modeling results suggest that percep-
tual and categorical information interact to influence the deci-
sion but that subjects weight categorical information more
strongly because of the nature of the task. The models also
suggest that domain interactions are most relevant when sa-
lience is low in either domain.

fMRI Analysis

Parametric representation of stimulus features within the
brain. To identify a neural correlate of the above model
findings during RBC, we measured BOLD activity in the brain
while subjects performed the task. We first identified areas that
modulated the amplitude of their response as a function of
perceptual and categorical salience. Decision making studies
using only a single domain of information have established that
nodes in the frontoparietal network (FPN) exhibit a negative
parametric effect of stimulus salience (Hebart et al. 2012; Ho
et al. 2009; Kayser et al. 2010b; Tosoni et al. 2008). In other
words, BOLD amplitude decreases in these areas as stimulus
salience increases—e.g., with increasing motion coherence
(Kayser et al. 2010b). In contrast, when faced simultaneously
with relevant as well as highly salient but irrelevant/unattended
stimuli, the FPN response to the irrelevant stimulus feature
demonstrates a positive parametric effect, with BOLD ampli-
tude increasing with stimulus salience (Kayser et al. 2010a).
Modeling results suggest that categorical information is
weighted more strongly than perceptual information, so we
hypothesized that the FPN would exhibit a negative parametric
effect as a function of categorical salience and a relatively
more positive parametric effect as a function of perceptual
salience.

Figure 4A shows areas demonstrating a parametric modula-
tion by categorical salience, while Fig. 4B shows the same for
modulation by perceptual salience, masked by a positive main
effect of task to exclude regions that deactivate during task
performance. Here, cold (blue) colors represent a negative
parametric effect—i.e., increasing BOLD activity with de-
creasing categorical or perceptual salience—while hot (red)
colors indicate positive parametric effects—i.e., increasing

BOLD activity with increasing categorical or perceptual sa-
lience. When processing categorical information, FPN areas
including dorsolateral prefrontal cortex, anterior cingulate/pre-
supplementary motor area, anterior insula, and intraparietal
sulcus exhibited a strong bilateral negative parametric effect
(Fig. 4A, blue; P � 0.05, corrected; Table 3). Perceptual

Fig. 4. Brain regions showing a parametric representation of salience in the categorical and perceptual domains. A: categorical salience (distance from category
boundary). B: perceptual salience (motion coherence). Cold (blue) colors indicate negative parametric effects—i.e., increasing BOLD activity with decreasing
categorical or perceptual salience—while hot (red) colors indicate positive parametric effects—i.e., increasing BOLD activity with increasing categorical or
perceptual salience. All functional maps were cluster size corrected to achieve a significance of P � 0.05 and masked by the positive main effect of task (see
MATERIALS AND METHODS). Threshold t value � 3.97.

Table 3. Brain areas showing a parametric effect of distance
from category boundary

Area Hemi

Coordinates

t Scorex y z

Negative parametric effect
mIPS L �18 �72 54 �7.94
aIPS R 39 �42 45 �7.94
mIPS R 24 �69 57 �7.42
MOG R 36 �75 33 �7.40
aIPS L �36 �45 42 �7.39
IFS R 54 6 33 �7.33
SMA L �3 18 45 �6.77
FEF R 30 �6 51 �6.71
mIPS L �27 �81 33 �6.46
aINS L �30 24 3 �6.45
IFS L �48 6 30 �6.33
FEF L �24 �9 48 �6.23
Thalamus L �9 �18 12 �5.66
Cerebellum L �12 �54 �54 �5.61
SMG R 63 �24 39 �5.53
aINS R 36 21 6 �5.34
Cerebellum R 42 �42 �36 �5.22
MT� L �45 �69 �9 �5.08
Midbrain L �3 �27 �24 �5.00
MT� R 51 �60 �12 �4.84
Cerebellum R 12 �78 �24 �4.69
OPOLE R 15 �96 �3 �4.34
ACC R 12 24 27 �4.27
Cerebellum R 24 �63 �57 �4.21
SMG L �51 �27 36 �4.12

List of areas showing significant parametric effects of categorical salience.
The functional maps were cluster size corrected to achieve a significance of
P � 0.05 and masked by the positive main effect of task. ACC, anterior
cingulate cortex; aINS, anterior insula; aIPS, anterior intraparietal sulcus;
FEF, frontal eye fields; IFS, inferior frontal sulcus; mIPS, middle intrapa-
rietal sulcus; MOG, middle occipital gyrus; MT�, middle temporal area;
OPOLE, occipital pole; SMA, supplementary motor area; SMG, supramar-
ginal gyrus.
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information, on the other hand, produced a predominantly
positive parametric effect (Fig. 4B, red; P � 0.05, corrected;
Table 4) within FPN nodes, with the exception of anterior
insula, which did not exhibit a significant parametric effect of
perceptual salience. To confirm the importance of representa-
tions for both features within the FPN irrespective of the
direction of the parametric effect, we also performed a whole
brain contrast of the absolute value of parametric category
distance, collapsed across all values of motion coherence, and
the absolute value of parametric motion coherence, collapsed
across all values of category distance. Consistent with the
above findings, no brain regions survived significance correc-
tion (data not shown), indicating that while the sign of the
parametric variation may differ in important ways, both fea-
tures are represented in similar regions of the FPN.

Feature integration for categorical choices. To address our
behavioral and modeling results suggesting that perceptual and
categorical information interact to influence subjects’ choices,
we next evaluated the neural interaction between motion co-
herence and category distance. To identify FPN nodes wherein
motion coherence and distance from category boundary inter-
acted, we carried out a three-factor ANOVA in which subjects
were included as a random effect (Fig. 5A; P � 0.05, cor-
rected). A similar FPN demonstrated both the parametric
effects of salience and their interaction. Table 5 provides the
full list of areas showing significant interactions (P � 0.05,
corrected) between perceptual and categorical information.

However, one concern about this interaction relates to the
inclusion of the 0% motion coherence and 0° category distance
conditions, specifically, the concern that the interaction may be
driven solely by a qualitative change in behavior when no
motion signal or categorization signal is available. To address
this possibility, we reran the above ANOVA after excluding all

0% motion coherence and 0° category distance conditions. As
shown in Fig. 5B, a significant interaction between the two
domains remained evident in many regions within the FPN,
even when these zero-salience conditions were not included.
Table 6 provides the full list of areas showing significant
interactions (P � 0.05, corrected) when low-salience condi-
tions were excluded.

To affirm that the FPN nodes reflecting domain interactions
were also behaviorally relevant [in that they reflected the more
decision-relevant feature(s)] and to ensure that parametric
responses to behavioral output as well as sensory input were
investigated, we next related FPN activity directly to subject
accuracy on the task. To do so, we created parametric weights
corresponding to accuracies at different stimulus combinations,
rather than to the salience of the stimulus features themselves,
and evaluated FPN activity as a function of these weights (see
MATERIALS AND METHODS). These results are shown in Fig. 5C
(P � 0.05, corrected; see also Table 7), with red and blue
colors representing positive and negative parametric effects,
respectively. The same FPN nodes demonstrating an interac-
tion between stimulus domains also showed a negative para-
metric effect of accuracy, thus underscoring the relevance of
these interactions to behavior. However, the gross parametric
effects and ANOVA interaction map shown in Figs. 4 and 5 do
not yet account for the parametric BOLD response at individ-
ual levels of salience in either domain.

FPN dynamics as a function of feature salience. To sepa-
rately study FPN dynamics under low and high feature sa-
lience, we did the following: rather than evaluating parametric
effects of perceptual salience collapsed across all values of
categorical salience, as in Fig. 4, we evaluated the effects of
perceptual salience at each level of categorical salience, and
vice versa. At high salience in either domain, we expected the
FPN to display a predominantly negative parametric effect as
a function of the other feature—e.g., at high categorical sa-
lience, the choice would be driven primarily by variation in
perceptual salience. In contrast, under low-salience conditions,
we expected differential activity in the FPN depending on the
domain of salience. Specifically, at low categorical salience,
for which motion coherence remains decipherable, we ex-
pected the FPN to display a positive parametric effect of
perceptual salience. On the other hand, at low perceptual
salience, decision information is hidden from the subject. Thus
we expected to see minimal but potentially differential para-
metric activity in the FPN under these two conditions.

The split parametric maps within the FPN (P � 0.05,
corrected) are displayed in Fig. 6. Figure 6A shows parametric
effects of categorical salience at each value of perceptual
salience, while Fig. 6B shows the parametric effects of percep-
tual salience at each value of categorical salience. Consistent
with the predictions of the model, at the lowest perceptual
salience, when perceptual information was absent, (Fig. 6A,
left), there was minimal parametric activity in the FPN. At the
lowest categorical salience, on the other hand, parietal—but
not frontal—cortex showed a robust positive parametric effect
as a function of perceptual salience (Fig. 6B, left). Importantly,
as motion coherence increased to perceptible values (Fig. 6A),
the parametric effect of categorical salience grew more nega-
tive, consistent with its stronger weighting. In contrast, as
categorical salience increased to strongly perceptible values
(e.g., 45°), a positive parametric effect of perceptual salience

Table 4. Brain areas showing a parametric effect of
motion coherence

Area Hemi

Coordinates

t Scorex y z

Positive parametric effect
mIPS L �6 �72 54 9.24
aIPS R 51 �42 57 9.13
PCC R 3 �30 27 6.77
MOG R 45 �78 27 6.53
aIPS L �45 �51 54 6.36
mIPS R 15 �78 42 6.30
MT� R 54 �57 �15 5.94
Calcarine gyrus R 24 �60 18 5.46
SMG L �60 �27 39 5.29
mIPS L �27 �69 42 4.96
Fusiform gyrus R 27 �54 �15 4.53
MT� L �48 �63 �9 4.51
OPOLE R 12 �87 �21 4.40
OPOLE L �12 �81 �12 4.38
Cerebellum L �36 �81 �24 4.22

Negative parametric effect
OPOLE R 18 �99 3 �3.80

List of areas showing significant parametric effects of perceptual salience.
The functional maps were cluster size corrected to achieve a significance of
P � 0.05 and masked by the positive main effect of task. aIPS, anterior
intraparietal sulcus; mIPS, middle intraparietal sulcus; MOG, middle occipital
gyrus; MT�: middle temporal area; OPOLE, occipital pole; PCC, posterior
cingulate cortex; SMG, supramarginal gyrus.
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could still be demonstrated, in keeping with the reduced
weighting of this information. At the other end of the spectrum,
when salience was high in either domain, the entire network
showed negative parametric modulation as a function of sa-
lience in the other stimulus domain (Fig. 6, A and B, right). The
corresponding time courses of BOLD activity within three

representative nodes of the FPN are shown in Fig. 7. A robust
effect of perceptual and categorical salience across feature
values is visible in the peak amplitude of the time courses,
providing further evidence that the parametric effects were not
driven by any single level of salience.

In addition to the split parametric effects, we evaluated
domain-specific contributions and domain interactions by con-
trasting parametric maps in the high- and low-salience conditions
(Fig. 8). This analysis directly compares the parametric changes in
brain activity due to categorical and perceptual salience in specific
conditions in order to define regions that respond preferentially to
one or the other domain. The center panels in Fig. 8 are from Fig.
6: top panels are the extreme panels from Fig. 6A (0%, 100%
coherence), and bottom panels are from Fig. 6B (0°, 90° distance
from category boundary). Figure 8, A and B, show the contrast of
parametric modulation of perceptual and categorical salience at
the extreme levels of categorical and perceptual salience, respec-
tively. All nodes of the FPN demonstrated changes in parametric
activity along the salience spectrum in both domains, again
indicating that both features were used to make categorical
choices. Figure 8C shows the contrast of parametric effects at low
salience in both domains, while Fig. 8D shows the contrast at high
salience in both domains. At low salience, the contrast map is
similar to the map showing parametric effects of coherence,
highlighting the result that FPN activity at low salience was
limited to parietal regions and driven primarily by perceptual
information. At high salience, however, all nodes in the FPN
exhibited parametric activity during categorization, indicating that
both features contributed to the choice.

Fig. 5. FPN regions showing a domain interaction (A and B) and a parametric representation of accuracy (C). A: to identify areas involved in processing both
categorical and perceptual salience, a mixed-effects ANOVA was performed using factors of category distance and coherence. Brain regions that demonstrate
a significant interaction between these two task features are shown in hot colors. Threshold F value � 3.09. B: to ascertain that the interaction was not driven
solely by a qualitative change in behavior when no motion signal or categorization signal was available, the ANOVA was repeated after exclusion of the
low-salience conditions. Brain regions that demonstrate a significant interaction are shown in hot colors. Threshold F value � 4.55. C: the parametric
representation of accuracy was assessed by first binning accuracies in the 20 unique stimulus combinations into 4 bins, transforming the weights to a zero-mean
vector with sum of squares equal to 1, and applying the resultant parametric weights to the stimulus regressors. The color scheme in C is the same as that of
Fig. 4—i.e., negative parametric effects, in which BOLD activity increases with decreasing accuracy, are shown in cold colors, while positive parametric effects
are shown in hot colors. All functional maps were cluster size corrected to achieve a significance of P � 0.05 and masked by the positive main effect of task
(see MATERIALS AND METHODS). Threshold t value � 3.97.

Table 5. Brain areas showing interaction effects between
distance from category boundary and motion coherence

Area Hemi

Coordinates

F Scorex y z

MOG R 33 �75 36 7.91
FEF L �24 �6 51 7.36
MT� R 54 �60 �9 5.80
SMG R 63 �24 42 5.62
FEF R 30 �9 57 4.16
IFS R 57 9 36 3.80
SMA R 3 12 54 3.73
SMG L �45 �30 36 3.49
aIPS R 48 �42 57 3.46
mIPS L �18 �72 54 3.40
aIPS L �39 �48 60 3.25
mIPS R 12 �72 60 3.13
IFS L �51 9 33 2.72

List of areas showing the significant interaction of perceptual and categor-
ical salience. The functional maps were cluster size corrected to achieve a
significance of P � 0.05 and masked by the positive main effect of task. aIPS,
anterior intraparietal sulcus; FEF, frontal eye fields; IFS, inferior frontal
sulcus; mIPS, middle intraparietal sulcus; MOG, middle occipital gyrus; MT�,
middle temporal area; SMA, supplementary motor area; SMG:, supramarginal
gyrus.
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DISCUSSION

Perceptual decision making (PDM) refers to the process of
evaluating incoming sensory information, typically low-level,
noise-corrupted stimuli such as motion signals, in order to
choose an action from potential alternatives (de Lafuente and
Romo 2003; Gold and Shadlen 2007; Heekeren et al. 2008;
Ratcliff and McKoon 2008). On the other hand, studies of
rule-based categorization (RBC) typically use strong, percep-
tually salient stimuli that are mapped to different sets, and
thereby to different responses, based on generalizable rules
defined by category boundaries (Ashby and Maddox 2011).
Thus variation in perceptual, as opposed to categorical, deci-
sion making may be reflected in more concrete, as opposed to
more abstract, representations encoded within different deci-
sion-relevant brain regions. Alternatively, because both types
of decision involve rule-based mappings from a stimulus to a
response, pertinent stimulus features might be represented
similarly within decision making circuitry that adapts to en-
code decision-relevant features. Here we sought to manipulate
both sources of stimulus salience independently and simulta-
neously to characterize how decision making networks incor-
porate information from these differentially abstract stimulus
domains (perceptual/concrete and categorical/abstract). Our
results demonstrate not only the activation of similar networks
of brain regions in both cases but also the importance of
interactions between these two domains, especially when sa-
lience is low. However, both modeling and imaging results also
suggest that categorical information is weighted more strongly
than perceptual information, as driven by task demands.

Modeling Behavior During Categorization Task

Importantly, one feature of both PDM and RBC tasks is the
potential to model such behavior with simple integration-to-
bound accounts of decision making (Ratcliff and McKoon
2008). Here we demonstrated that a simple proportional rate
drift diffusion model was sufficient to account for subject
behavior as it varied with both perceptual and categorical
salience. Interactions between perceptual and categorical sa-
lience were strongly evident in subject behavior, both for
accuracy and RT data. Accordingly, the three versions of the
diffusion model we tested suggested that interactions between
perceptual and categorical information are necessary for deci-
sion making, especially when salience in either domain is low.

However, as indicated by the quality of model fits, categorical
information was weighted more strongly, likely by virtue of the
fact that the decision ultimately required a categorical motor
decision (i.e., a left or right button press). A similar phenom-
enon has been observed during the integration of multiple
sensory modalities as well: integration is maximal when all
modalities being integrated are individually suboptimal, but
when any modality is highly salient decisions are weighted
heavily on its basis (Senkowski et al. 2011; Stein et al. 2009;
Stevenson et al. 2012). Conceptually, this finding argues that
the FPN can flexibly incorporate the information that is most
relevant to the decision.

While the diffusion model fit these data well, it was less
accurate for low categorical salience and increasing perceptual
salience—i.e., when most subjects displayed a decrease in RT
without a corresponding increase in accuracy. From a behav-
ioral perspective this finding likely results from the fact that, as
motion coherence increased, subjects could more readily infer
that decision-relevant categorical information was absent, thus
prompting them to respond faster. The model’s inability to
capture this effect is principally because the equations describ-
ing the model (Palmer et al. 2005) fit best when RT and
accuracy change in concert with each other. A more complex
model, possibly one incorporating collapsing decision thresh-
olds, might be better able to account for systematic variations
in RT when categorical evidence is absent. In addition, the
model employed here produced summary values for model
parameters that were obtained from all the data, rather than
single-trial estimates of these values. In the future, models
capable of deriving trial-by-trial estimates of categorical and
perceptual variables for use in neuroimaging analyses might
allow one to demonstrate how brain activity contributes to
variation in such decisions across time.

FPN Activity Representing Stimulus Variability

In line with being conceptualized differently, PDM and RBC
have also been thought to have distinct neural correlates within

Table 6. Brain areas showing interaction effects after low-
salience conditions were excluded

Area Hemi

Coordinates

F Scorex y z

MOG R 42 �75 27 5.26
FEF L �24 �6 57 5.53
FEF R 30 �9 54 6.26
IFS R 54 9 36 5.56
aIPS R 45 �42 54 5.15
mIPS R 27 �69 54 5.29

List of areas showing the significant interaction of perceptual and categor-
ical when low salience stimuli were eliminated. The functional maps were
cluster size corrected to achieve a significance of P � 0.05 and masked by the
positive main effect of task. aIPS, anterior intraparietal sulcus; FEF, frontal eye
fields; IFS, inferior frontal sulcus; mIPS, middle intraparietal sulcus; MOG,
middle occipital gyrus.

Table 7. Brain areas showing a parametric effect of accuracy

Area Hemi

Coordinates

t Scorex y z

Negative parametric effect
aIPS R 27 �57 57 �5.82
SMA 0 9 51 �5.82
FEF L �27 �9 48 �5.79
FEF R 30 �9 51 �5.49
ACC R 12 24 30 �5.38
aINS L �30 24 3 �5.13
Cerebellum 0 �30 �6 �4.95
IFS R 54 3 33 �4.60
aIPS R 39 �36 42 �4.36
mIPS L �21 �63 54 �4.21
IFS L �51 0 33 �4.01

Positive parametric effect
aIPS R 51 �45 57 5.87
Ang R 51 �54 �24 5.16

List of areas showing the significant parametric effects of accuracy. The
functional maps were cluster size corrected to achieve a significance of P �
0.05 and masked by the positive main effect of task. ACC, anterior cingulate
cortex; Ang, angular gyrus; aIPS, anterior intraparietal sulcus; FEF, frontal eye
fields; IFS, inferior frontal sulcus; aINS, anterior insula; mIPS, middle intra-
parietal sulcus; SMA, supplementary motor area.
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frontal and parietal cortices. In work in other animals, decision
making paradigms have uncovered the existence of neurons
that accumulate evidence over noisy sensory representations in
FPN regions including the lateral intraparietal area (Roitman
and Shadlen 2002) and the frontal eye fields (Schall 2003) as
well as the basal ganglia (Ding and Gold 2010) and other
regions (de Lafuente and Romo 2006). In contrast, a review of
RBC studies emphasizes the existence of category-selective
neurons throughout the primate brain (Seger and Miller 2010),
although—consistent with PDM work—such studies have
generally focused on the ability of frontal and parietal neurons
to flexibly represent variable category salience in the face of
consistent sensory stimuli (Freedman and Miller 2008; Swami-
nathan and Freedman 2012). More recently, reports that em-
phasize the commonality of perceptual and categorical decision
making (Freedman and Assad 2011) have focused on the
ability of parietal neurons to represent abstract outcomes that
are linked neither to the specific source of salience nor to a
specific motor response.

Despite their emphasis on different stimuli (from motion, to
objects, to faces and facial expressions), human PDM studies
have converged upon a similar FPN that represents these
features in a fashion that varies parametrically with salience.
Potentially consistent with work in primate LIP, EEG studies
have argued for the existence of a centroparietal positivity that
appears to represent a general decision making variable
strongly correlated with the accumulation of sensory evidence
(Kelly and O’Connell 2015). Categorization studies tend to
find a similar network (Seger and Miller 2010; White et al.
2012), though with perhaps greater emphasis on frontal regions
including the anterior cingulate/supplementary motor area and
premotor regions (Grinband et al. 2006), especially during
category learning (Ashby and Maddox 2011). Even studies that
explicitly address salience in a different manner (e.g., by
manipulating probabilities or risk) find its parametric represen-
tation within the FPN (Huettel et al. 2005; Lopez-Paniagua and
Seger 2013; Wheeler et al. 2015), although the last study found
that frontoparietal areas were even more active when the
evidence for one response over the other switched during the
trial. The authors argue that this sensitivity to switching may
implicate a more general function of the FPN than evidence

accumulation, such as attention or mental calculation (Wheeler
et al. 2015). Alternative possibilities may be that because
the BOLD signal is likely to incorporate neurons integrating
evidence toward both decision boundaries the signal may be
even greater on trials when strong evidence is present for
both decisions or that multiple cognitive processes are in-
corporated within this network. Regardless, here we found
that the FPN strongly represented both distance from the
category boundary and motion coherence, as well as their
interaction, arguing that common brain networks underlie
PDM and RBC. However, in keeping with the diffusion
model findings that category information might be prefer-
entially weighted, we found a strongly negative parametric
effect for category variation but a positive parametric effect
for motion coherence, consistent with our previous finding
that the BOLD response to more decision-relevant stimulus
features varies inversely with stimulus salience—i.e., fewer
neural resources are required as stimulus salience increases
(Kayser et al. 2010a).

FPN Representation of Multiple Sources of Information

The above findings demonstrate that stimulus domains rel-
evant to the decision will be represented within the FPN;
however, how multiple sources of salience are represented
remains an active area of investigation. In a recent set of
studies manipulating the mean and variance of categorical
information (de Gardelle and Summerfield 2011; Michael et al.
2015), FPN activation was found to vary depending on the
source of stimulus variability. As salience in the mean de-
creased (analogous in the present study to dots moving closer
to the category boundary), greater BOLD amplitude was seen
within the entire network, similar to the negative parametric
FPN activity observed here with varying categorical salience.
In contrast, variance-related salience produced differential ac-
tivity within the FPN: parietal areas showed a negative para-
metric effect, while medial frontal areas responded with a
positive parametric variation. Because we did not have a direct
correlate of variance-related salience, these results cannot be
directly compared with results from our task; rather, we varied
motion coherence, which impacts the variance in the category

Fig. 6. Parametric representation of categorical salience at each level of perceptual salience, and vice versa, in frontoparietal areas. A: parametric map of
categorical salience at each value of motion coherence. B: parametric map of perceptual salience at each value of distance from category boundary. The color
scheme is the same as that of Fig. 4—i.e., negative and positive parametric effects are shown in cold and hot colors, respectively. All functional maps were
cluster-size corrected to achieve a significance of P � 0.05 (see MATERIALS AND METHODS) and masked by the positive main effect of task. Threshold t
value � 3.97.
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signal, and observed a positive parametric effect within the
parietal components of the FPN. Based on our previous work
(Kayser et al. 2010a), this positive parametric effect may
reflect attentional resources having been allocated away from
less relevant features—or, more generally, the relative absence
of strong top-down modulation of such feature representations.
Nonetheless, these results are in keeping with the fact that
multiple stimulus features are represented parametrically
within the FPN.

Notably, in a study of an information integration categori-
zation (IIC) task, in which (unlike RBC) the categorization is
difficult to verbalize and is typically learned implicitly, results
were different (Seger et al. 2015). In this study, both distance
from the decision boundary and distance from a prototype
stimulus were independently varied. Activation within a cin-
gulo-opercular network was greater for stimuli closer to the
decision boundary, potentially reflecting increasing conflict
between responses generated by procedural (i.e., striatal) sys-

Fig. 7. Time courses from 3 representative nodes in the FPN. A: time courses from the supplementary motor area (SMA) (MNI x � 3, y � 12, z � 51). B: time
courses from left frontal eye fields (FEF) (MNI x � �24, y � �9, z � 48). C: time courses from left middle intraparietal sulcus (mIPS) (MNI x � �24, y � �63,
z � 57). The color scheme is similar to that of Fig. 2. Progressively darker shades of gray indicate progressively higher category distance (top) and higher
coherence (bottom). These results confirm the parametric effects noted in Fig. 4. a.u., Arbitrary units.
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tems, while activity within the superior parietal lobule was
sensitive to distance from the prototype (Seger et al. 2015), in
keeping with the potential involvement of a perceptual repre-
sentation memory system (Ashby and Maddox 2011). These
findings raise the intriguing possibility—as hypothesized else-
where (Ashby and Maddox 2011)—that IIC tasks, and/or tasks
that depend on a prototype, activate a different set of cognitive
processes, and therefore a different network of brain regions,
than RBC tasks.

Frontal-Parietal Dissociation and Cognitive Control
Within FPN

In addition to distinguishing more relevant from less rele-
vant stimulus features, parametric activity could dissociate
frontal from parietal regions. Most notably, when category
information was absent (because category distance was at 0°),
only variability in motion coherence distinguished the different
sensory stimuli, but this feature did not permit a decision to be
made in the task. In this circumstance, BOLD activity that was
positively parametric with motion coherence was seen within
parietal regions, but no differential activity was seen within

frontal regions. This finding argues that frontal activity only
distinguishes task conditions when decision-relevant informa-
tion permits selection of an appropriate response. Consistent
with this idea, when we parameterized BOLD data by accuracy
rather than by stimulus domain in the larger data set, a negative
parametric effect was seen in frontal cortex. More broadly, this
finding agrees with proposals in which the parietal cortex
defines relational metrics that are then used by the frontal
cortex to select appropriate actions (Genovesio et al. 2014).

Criticisms, Limitations, and Future Directions

One question that might arise from these results concerns
whether choosing different values for categorical distance and
motion coherence could shift the weighting of each of these
features. Given that the feature values sampled here covered
the full range of accuracy values and a range of RTs, we
suspect that the weighting, both behaviorally and in the brain,
would not differ. More importantly, our data argue that making
a categorical decision would require a choice that necessitates
evaluating the categorical information available in the task. On
the other hand, if subjects were tasked to make judgments

Fig. 8. Contrast of parametric activity in one task feature at high and low salience in the other, confirming quantitatively that differences in parametric activation
within the FPN distinguish these conditions. Center images are the extreme panels taken from Fig. 6, A and B, demonstrating parametric category activity at 0%
and 100% coherence, respectively (top) and parametric motion coherence activity at 0° and 90° from category boundary, respectively (bottom). A: contrast of
parametric category activity at 100% vs. 0% coherence. B: contrast of parametric motion coherence activity at 90° vs. 0° distance from category boundary. C:
contrast of parametric motion coherence activity at 0° from category boundary with parametric category activity at 0% motion coherence. D: contrast of
parametric category activity at 100% coherence with parametric motion coherence activity at 90° from category boundary. The color scheme is the same as that
of Fig. 4—i.e., negative and positive parametric effects are shown in cold and hot colors, respectively. All functional maps were cluster size corrected to achieve
a significance of P � 0.05 (see MATERIALS AND METHODS) and masked by the positive main effect of task. Threshold t value � 3.97.
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about the level of motion coherence rather than the direction of
motion, we would hypothesize that the coherence information
would be more strongly weighted and the directional informa-
tion would be less strongly weighted. In fact, our previous
work has demonstrated that directing subjects to make deci-
sions based on one feature or another profoundly modulates the
way in which the inferior frontal sulcus and intraparietal sulcus
process those features in a PDM task (Kayser et al. 2010a).
More generally, regions within the FPN should weight the
feature(s), or the feature interactions, that are most relevant to
the task at hand and may therefore reflect the operation of a
flexible, multiple-demand frontal network (Duncan 2013) that
is responsible for making first-order stimulus response associ-
ations. Thus the important difference in this task is not an
unvarying property of the stimulus (e.g., direction of motion
vs. motion coherence) or the level of abstraction but a property
of the goals that the organism has defined. Asking subjects to
judge the level of motion coherence rather than the direction of
the stimulus relative to a boundary would consequently repre-
sent an interesting future direction.

Another theory concerning our findings centers on the pos-
sibility that the present behavioral, modeling, and imaging
results simply reflect behavioral and brain differences between
responses to imperceptible (zero salience) and perceptible
(higher salience) features rather than to differential weighting
of category distance and motion coherence. Because our be-
havioral data indicate that only zero motion coherence and zero
category distance are imperceptible, we are able to exclude this
possibility. First, our behavioral findings remain significant
when these conditions are excluded, indicating that our find-
ings do not depend on a division into perceptible and imper-
ceptible regimes. Second, our imaging findings directly con-
tradict this interpretation. Figure 4B demonstrates a positive
parametric effect of motion coherence when the data are
collapsed across all values for category distance; four of five of
these category distance conditions give rise to above-chance
behavior (Fig. 2A). Additionally, if one were concerned about
the unlikely possibility that the 0° category distance condition
dominates these other four category conditions, Fig. 6 demon-
strates that at the ID and 45° conditions (and even at the 90°
condition) there remains substantial positive parametric effect,
and Fig. 7 demonstrates time courses that vary gradually and
parametrically across feature values. Third, our behavioral,
modeling, and imaging results all demonstrate a statistically
significant interaction between the two features when the zero
motion coherence and zero category distance conditions are
excluded. Finally, even if one did agree with the idea that
subthreshold vs. suprathreshold feature values could explain
the switch from positive to negative parametric effect in the
distance plots in Fig. 6A, this explanation would not account
for the transition from positive to negative parametric effect
between the 45° and 90° � ID distances in the coherence plots
in Fig. 6B, both of which values are highly perceptible. More-
over, this point of view would not explain our previous work
(Kayser et al. 2010a) in which highly salient values of the same
feature, either motion coherence or color coherence in that
case, demonstrated a negative parametric effect if relevant and
a positive parametric effect if not. Thus we do not believe that
a dichotomous classification of the stimulus features into per-
ceptible and imperceptible adequately explains these data.

Conclusions

Here we demonstrate that information from perceptual and
categorical domains interact to produce choices, albeit with
preferential weighting for categorical information. These re-
sults highlight the importance of goal-relevant information and
its representation within FPN regions, and they are in keeping
with the idea that these frontoparietal regions comprise a
multiple-demand network that is activated by a variety of tasks
(Duncan 2013; Fedorenko et al. 2013) and that represents
salience to the extent that it is relevant to goals. Additionally,
these findings demonstrate that, although frontal and parietal
regions frequently coactivate, their roles in decision making
are distinct—as is especially evident in cases in which para-
metric but ultimately uninformative sensory information is
available. Given the diversity of cognitive processes mediated
by the FPN, further understanding the mechanisms by which
multiple salient stimulus features are represented within it,
particularly when categorization is not rule based, may provide
another useful window into this important flexibility.
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