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Humans have the ability to control immediate actions while main-
taining more abstract overarching goals1–5. The frontal lobes are 
crucial for goal-directed behavior6, including hierarchical control 
over action7–9, and neuroimaging demonstrates that neural activity 
is greater in prefrontal cortex (PFC) than in primary motor (M1) 
and premotor (PMC) cortices as rules governing behavior become 
more abstract2–4. This processing gradient may reflect a dynamic net-
work architecture supporting hierarchical cognitive control whereby 
PFC interacts with M1 and PMC (M1/PMC) during higher order  
action selection6,9–13. This control process is predicated on the 
capacity of the PFC to concurrently process information at multi-
ple timescales and levels of abstraction. However, this fundamental 
problem in cognitive neuroscience—how groups of brain regions 
coordinate information transfer in a noisy neuronal environment 
to maintain multiple goals—has not been addressed neurophysi-
ologically in the human brain. Although functional magnetic reso-
nance imaging (fMRI), electroencephalography (EEG) and lesion 
research has shown that the PFC is crucial for such complex cognitive  
processes3,9,13–17, the temporal and spatial limitations of those  
techniques make it difficult to directly examine inter-regional interac-
tions in frontal cortex.

Human intracranial electrocorticographic (ECoG) recordings 
allow for the reliable measurement of broadband gamma activity 
(~80–150 Hz, hereafter referred to as high gamma), a physiological  

measure that is correlated with both the fMRI BOLD signal18,19 and 
local neuronal population firing rates18,20. High gamma activity  
provides a link between single-unit physiology and mesoscale oscil-
latory dynamics16,19–27. Recent phase and amplitude coupling (PAC) 
research has found that the phase of low-frequency oscillations (for 
example, theta; 4–8 Hz) is co-modulated with high gamma activity 
both at rest and in a behaviorally relevant manner16,21–23,25,26,28–31, 
analogous to evidence that local neuronal spiking activity is biased 
according to local field potential oscillatory phase (spike and phase 
coupling)32–35. In addition to the role that theta oscillations have in 
coordinating neuronal spiking activity, there is mounting empiri-
cal evidence for a privileged role for theta in coordinating neuro-
nal ensembles during higher cognition, such as cognitive control36.  
In particular, the modulation of midline frontal theta oscilla-
tions during the decision-making process, but not during stimulus  
presentation, has been shown to predict individual differences in 
behavior under response conflict37. Moreover, a causal manipulation 
of hippocampal theta—specifically, theta phase–specific optogenetic 
stimulation in rats—has been shown to improve behavioral out-
comes, perhaps by reducing task-irrelevant activity via phase-based 
information coordination. Thus, theta may coordinate endogenous 
spiking activity to facilitate information processing and/or transfer, 
but analytic methods that account for trial-by-trial behavior may be  
necessary to isolate these effects29.
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Oscillatory dynamics coordinating human frontal 
networks in support of goal maintenance
Bradley Voytek1, Andrew S Kayser2,3, David Badre4,5, David Fegen1, Edward F Chang6,7, Nathan E Crone8,  
Josef Parvizi9, Robert T Knight1,10 & Mark D’Esposito1,2,10

Humans have a capacity for hierarchical cognitive control—the ability to simultaneously control immediate actions while holding 
more abstract goals in mind. Neuropsychological and neuroimaging evidence suggests that hierarchical cognitive control emerges 
from a frontal architecture whereby prefrontal cortex coordinates neural activity in the motor cortices when abstract rules are 
needed to govern motor outcomes. We utilized the improved temporal resolution of human intracranial electrocorticography 
to investigate the mechanisms by which frontal cortical oscillatory networks communicate in support of hierarchical cognitive 
control. Responding according to progressively more abstract rules resulted in greater frontal network theta phase encoding 
(4–8 Hz) and increased prefrontal local neuronal population activity (high gamma amplitude, 80–150 Hz), which predicts trial-
by-trial response times. Theta phase encoding coupled with high gamma amplitude during inter-regional information encoding, 
suggesting that inter-regional phase encoding is a mechanism for the dynamic instantiation of complex cognitive functions by 
frontal cortical subnetworks.
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Figure 1 Task, subjects and behavior.  
(a) Example trial events in the response  
(R2 block) and dimension (D2 block) subtasks. 
For the response task, subjects responded  
according to first-order mappings of colored 
squares to different button press responses;  
for the dimension task, subjects were cued  
by the colored square to make a third-order  
mapping, specifically, an object comparison  
based on one of two object dimensions  
(texture or shape). Matching and non-matching 
examples are shown. (b) Example rule set  
mapping colors to key-press responses across  
R1 (all colors map to the same response) and 
R2 (colors map to distinct responses) conditions 
of the response task (left). Example mappings 
from colors to target dimensions across D1  
(all colors map to the same dimension) and  
D2 (colors map to distinct dimensions)  
conditions of the dimension task (right).  
(c) All artifact-free frontal electrodes were 
included in the analyses. All anterior electrodes 
are colored in blue and all posterior electrodes 
are colored in orange. Electrodes outlined  
in white showed significant task-dependent 
changes in high gamma amplitude. Of the  
31 electrodes demonstrating a main effect  
of task on amplitude, 15 were located over  
M1/PMC and the remaining 16 were located over 
PFC. (d) Each subject showed a main effect of 
task on RTs such that RTs slowed as abstraction, 
and the corresponding cognitive control 
demands, increased. Subjects were fastest for zero-order stimulus-response mappings (R1, no conflict). RTs then increased parametrically for first-order 
(R2), second-order (D1) and third-order response rules (D2). Error bars indicate s.e.m. *Significant regression of task condition on RT, P < 10−20.

These observations suggest a possible mechanism by which spa-
tially segregated neuronal assemblies might coordinate neuronal activ-
ity across brain networks27. Specifically, we tested a model in which 
inter-regional theta phase encoding coordinates information transfer 
between frontal subregions during goal-directed behavior36. Such phase 
encoding would link low-frequency phase with high gamma amplitude 
in a task-dependent manner across phase-encoding sites, permitting 
multiple behavioral goals to be simultaneously maintained38. To evalu-
ate this model, we adapted a task (used previously in fMRI in healthy 
subjects and in stroke patients with focal brain lesions3,9) for ECoG in 
which subjects executed stimulus-response mappings that increased 
in abstraction from zero-order (R1) through first- (R2), second- (D1) 
and third-order (D2) relationships (Online Methods and Fig. 1a,b). As 
the level of abstraction increases, the task places increasing demands 
on hierarchical cognitive control and engages progressively more  
anterior regions of PFC1,3,9. Moreover, prior work has demonstrated 
that demands specifically related to increases in rule abstraction drive 
the recruitment of more anterior frontal regions, unlike other types  
of general difficulty3,6,39. However, the timing and physiological mech-
anisms of the interaction between these regions is unknown.

We hypothesized that, for lower order stimulus-response mappings, 
activity in posterior frontal regions (that is, M1/PMC) would be suffi-
cient to respond to the stimulus, whereas higher order cognitive con-
trol regions would be less active. In contrast, for more abstract tasks, 
high gamma activity would increase in anterior PFC. Furthermore, 
because increasingly anterior frontal regions become engaged during 
more abstract control processes, we further hypothesized that more 
abstract tasks would result in increased inter-regional frontal theta 
phase encoding. These phenomena would be reflected in regionally 
specific task-related alterations in high gamma activity predictive of 

trial-by-trial behavioral outcomes. Finally, from a physiological per-
spective, if inter-regional theta phase encoding supports task-related 
information transfer, we predicted that increasing cognitive control 
would result in increased task-dependent inter-regional theta and 
high gamma activity, as indexed by theta and high gamma PAC.

RESULTS
Increased task abstraction results in slower response times
Each subject (Fig. 1c) showed a main effect of task abstraction on 
behavioral response time (RT) such that RT increased parametrically 
as a function of task (linear regression analyses; subject 1, n = 107  
trials per subject, r = 0.77; subject 2, n = 128, r = 0.48; subject 3,  
n = 111, r = 0.82; subject 4, n = 98, r = 0.74; P < 10−7 each; Fig. 1d) with 
no significant effect of task condition on error rates (P > 0.05 for each 
subject). Of the 140 total frontal electrodes examined across subjects, 
31 electrodes showed task-dependent changes in baseline-adjusted 
high gamma analytic amplitude (hereafter referred to as amplitude) 
in the two frontal regions of interest (ROIs): 15 in the M1/PMC and 
16 in the PFC (Fig. 1c).

High gamma tracks task abstraction
Cortical high gamma amplitude provides high temporal resolution 
and a high signal-to-noise measure of trial-by-trial changes in local 
neuronal activity (Fig. 2a,b). The electrode selection criterion for the 
M1/PMC and PFC ROIs was such that only task-active electrodes— 
electrodes that showed a sustained encoding of task condition  
on high gamma amplitude (>100 ms, P < 0.05)—were included in 
analyses (Supplementary Fig. 1). Note that this selection criterion 
is agnostic with regards to the direction and timing of high gamma 
encoding such that both task-related increases and decreases in high 
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gamma activity were included in the ROI 
analyses; thus, any significant directionality 
effects survived this classification procedure 
(Online Methods).

In these task-selective electrodes, we 
observed a main effect of both frontal sub-
region (F1,440 = 10.98, P = 0.00010) and 
abstraction (F3,440 = 8.45, P < 10−4) on trial-by-trial stimulus-locked 
event-related high gamma time-to-peak, as well as a significant inter-
action between frontal subregion and task abstraction (F3,440 = 2.93,  
P = 0.033) (Fig. 2c). Post hoc analyses revealed that increasing abstrac-
tion was associated with an increase in high gamma time-to-peak in 
both M1/PMC (F3,440 = 8.97, P < 10−5) and PFC (F3,440 = 3.12, P = 0.026),  
with pairwise t tests suggesting that the interaction was driven by faster 
time-to-peak in M1/PMC for the R1 (P = 0.00048) and R2 (P = 0.0067) 

conditions, but not for D1 (P = 0.96) or D2 (P = 0.69). High gamma 
time-to-peak occurred later in the PFC than in M1/PMC for the R1 
(214 ms later) and R2 (158 ms later) conditions, but not for the more 
abstract D1 and D2 conditions (R1, P = 0.00048; R2, P = 0.0067; D1,  
P = 0.96; D2, P = 0.69). Activity in both regions peaked before trial- 
by-trial RTs (paired t test; M1/PMC, P < 10−27; PFC, P < 10−19).

With respect to high gamma amplitude, we observed a main 
effect of frontal subregion (F1,440 = 39.23, P < 10−9), along with a 
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Figure 2 High gamma amplitude differentiates 
frontal responses. (a,b) Time courses for the 
average event-related high gamma response 
across trials at the 15 posterior (M1/PMC, a) 
and 16 anterior (PFC, b) sites. (c) High gamma 
activity time to peak became increasingly 
delayed with increasing task abstraction in  
both M1/PMC (yellow, P < 10−5) and PFC  
(blue, P = 0.026) (*significant interaction,  
P = 0.033; main effect of region, P = 0.00010; 
and main effect of task abstraction, P < 10−4). 
(d) In contrast, peak high gamma amplitude 
decreased in M1/PMC (yellow, P = 0.0023)  
as task abstraction increased, with no change 
in PFC amplitude (blue) (**significant task-by-
region interaction, P = 0.008; and main effect 
of region, P < 10−9). Shaded regions and error 
bars indicate s.e.m.
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Figure 3 Frontal phase and amplitude  
communication model. (a) Example instantaneous  
theta phase encoding between PFC (blue) and  
M1/PMC (orange) (rose plots). Note that these  
plots are illustrative of significant, instantaneous  
phase-encoding at a single time point, but that these encoding values were dynamic and the encoding phases for each condition could change within 
a trial, across trials and across channel pairs. (b) The onset of significant phase encoding relative to the stimulus onset (∆t) differs for each encoding 
electrode pair (Online Methods). This relationship is shown for an example pair of M1/PMC and PFC electrodes, along with the corresponding gamma 
amplitudes in M1/PMC, across multiple trial events. (c,d) Following the onset of significant phase encoding, event-related theta phase/high gamma 
amplitude PAC could be evaluated (c). As seen in this example, PAC was statistically assessed as a non-uniformity in the distribution of high gamma 
amplitude relative to the theta phase difference between PFC and M1/PMC sites such that, for an illustrative case (d), inter-regional encoding-triggered 
PAC provided an index of frontal communication via temporally specific high gamma increases during inter-regional theta phase encoding.
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Figure 4 Task- and region-dependent frontal 
theta phase encoding. (a) Time course of  
event-related inter-regional theta phase 
encoding between electrode pairs in M1/PMC 
(black), between M1/PMC and PFC (blue),  
and in PFC (red) for electrode pairs showing 
theta phase information transfer (phase 
encoding of the task). (b) Time-to-peak  
inter-regional theta phase encoding was  
earliest for electrode pairs in M1/PMC, peaked 
later for pairs between M1/PMC and PFC,  
and peaked latest for pairs in PFC (color scheme 
as in a). (c) Maximum event-related theta  
phase encoding was only different for pairs 
between M1/PMC and PFC compared with 
pairs in PFC. Note that the peak encoding and 
encoding times as inferred from the plots in a 
may differ from those found by averaging the trial-by-trial peaks shown in b and c as a result of the differences in finding peaks of averages (a) versus 
averaging peaks (b,c) (see Supplementary Fig. 4 for an illustrative example). Shaded regions and error bars indicate s.e.m. *Significant t test, P < 0.05. 
Horizontal bars indicate significant regression, P < 0.05 (uncorrected).

significant interaction between frontal subregion and abstraction  
(F3,440 = 3.95, P = 0.008) (Fig. 2d). There was no main effect of 
abstraction on high gamma amplitude (F3,440 = 1.28, P = 0.28), with 
the interaction being driven by a trial-by-trial decrease in amplitude 
with increasing abstraction in M1/PMC (F3,440 = 4.92, P = 0.0023), 
but not in PFC (F3,440 < 1.0). We emphasize that these effects that we 
observed for gamma time-to-peak and amplitude were present despite 
the fact that the electrode selection criterion was not based on any 
relationship between abstraction and gamma amplitude and was blind 
to the direction of the effect.

We next examined the relationship between trial-by-trial RT  
and the high gamma measures via linear regression analysis using 
time-to-peak and amplitude in both M1/PMC and PFC as regressors.  
We observed that these high gamma measures were predictive of trial-
by-trial RT (full regression: R2 = 0.075, P < 10−6; M1/PMC amplitude,  
P = 0.0012; M1/PMC peak time, P < 10−4; PFC amplitude, P = 0.17; PFC 
peak time, P = 0.045; Supplementary Fig. 2). This ability to predict 
trial-by-trial RT from frontal high gamma activity cannot be attrib-
uted to task difficulty (Online Methods), as RT could still be predicted 
from high gamma activity even when removing the effects of task 
abstraction from trial-by-trial RT (R2 = 0.024, P = 0.032). A significant 
proportion of the remaining variance in trial-by-trial RT, after control-
ling for the effects of task abstraction, was explained by delays in PFC 
high gamma time-to-peak (partial r = 0.13, P = 0.008), indicating that 
PFC timing delays drive slower RTs independent of task abstraction. 
Finally, even when removing trials in which gamma activity peaked 
within 100 ms of each trial’s RT, both the regression models remained 
significant predictors of behavior (task abstraction, R2 = 0.037,  
P = 0.014; trial-by-trial RT, R2 = 0.053, P = 0.001).

Inter-regional theta phase encodes task information
We also examined the role that inter-regional theta phase encoding 
has in coordinating frontal network communication during hierar-
chical cognitive control. As with the high gamma analyses, we first 
identified phase encoding pairs of electrodes in M1/PMC and PFC, 
as well as between M1/PMC and PFC, from the pairwise theta phase 
difference between electrodes (Online Methods and Fig. 3). An elec-
trode pair was defined as task encoding if the task condition explained 
a significant proportion (P < 0.05) of the circular variance of the 
pairwise theta difference for more than 100 ms consecutively (Online 
Methods). Of 2,533 total possible frontal electrode pairs across all 
subjects—141 in M1/PMC, 1,457 in PFC, and 935 between M1/PMC 

and PFC—32 pairs (22.7%) were task encoding in M1/PMC, 200 pairs 
(21.4%) were task encoding between M1/PMC and PFC, and 319 
pairs (21.9%) were task encoding in PFC (no significant differences 
between proportions, χ2 test P > 0.7 all comparisons). As with the 
high gamma analyses, this selection method was blind with regard to 
the direction and timing of the encoding effect. In total, this process 
resulted in 21.8% of the channels being classified as phase encoding. 
We verified that this method did not result in an inflated number 
of false positives by using a non-parametric resampling approach 
(Online Methods). This permutation analysis resulted in substantially  
fewer phase encoding pairs: on average only 13.7% and at most 21.3%, 
fewer than the actual observed proportion of encoding pairs (21.8%). 
This means that the observed number of encoding pairs is greater 
than the maximum number of encoding pairs likely to be observed 
by chance alone, and is strong evidence that this approach captures 
task-dependent phase encoding.

From this selection, we calculated time-resolved event-related theta 
encoding between electrode pairs (Fig. 4a). Across these encoding 
pairs, the time-to-peak phase encoding was earliest for encoding  
pairs in M1/PMC, later for pairs between M1/PMC and PFC, and 
latest for pairs in PFC (unpaired t tests; intraregional M1/PMC  
versus inter-regional M1/PMC-with-PFC, t230 = 2.25, P = 0.025; inter-
regional M1/PMC-with-PFC versus intra-PFC, t517 = 2.33, P = 0.020; 
Fig. 4b). In contrast, peak event-related phase encoding was only dif-
ferent between M1/PMC-with-PFC and intraregional PFC (t517 = 4.49, 
P < 10−5; Fig. 4c).

Because the ability to accurately estimate phase was dependent 
on the oscillatory power in the band of interest, we looked at task-
related changes in theta amplitude to see whether such changes might 
contribute to the observed encoding and/or PAC results. We did not 
observe any effect of task abstraction on theta amplitude (no region-
by-load interaction, F3,438 = 1.29, P = 0.28; no main effect of task, 
F3,438 < 1.0; no effect of task in either region, P > 0.10). We did observe 
a main effect of region such that M1/PFC theta amplitude was higher 
than PFC theta amplitude (F1,438 = 14.6, P < 10−3). However, we note 
that encoding was greatest for intraregional PFC, for which task-
related theta amplitude was lowest. We also examined the effect of 
task abstraction on theta amplitude timing in the exact same manner 
as we used for gamma amplitude. We did not observe any effect of task 
abstraction on theta amplitude timing (no load-by-region interaction, 
no main effect of load, no effect of load in either region and no effect 
of region; F < 1.0 for all).
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Figure 5 Encoding-triggered PAC. (a) For 
electrode pairs showing theta phase encoding  
of the task, theta/gamma PAC around the 
encoding peak increased as a function of task 
demands (main effect of task abstraction,  
P < 10−18). There was also a task-by-coupling 
region interaction (**significant task-by- 
region interaction, P = 0.0058) such that 
encoding-triggered PAC increased as a function 
of task between encoding PFC electrode pairs 
(P < 10−49) and for encoding pairs between 
M1/PMC and PFC (P < 10−17), but less so 
for encoding pairs in M1/PMC (P = 0.084). 
*significant main effect of task, P < 10−4;  
ns, not significant, P > 0.10. (b) There was  
also an effect of directionality on PAC between  
M1/PMC and PFC such that PFC theta phase 
was a stronger predictor of M1/PMC high 
gamma than M1/PFC theta phase was of PFC 
high gamma (***significant main effect of 
direction, P = 0.0021; main effect of load,  
P < 10−23). (c,d) Time course of time-resolved 
PAC (c, averaged across task conditions, 
colors as in b) and effect size of directional 
PAC relative to encoding onset (d), showing that the peak directional effect was near the theta phase encoding onset (dashed line shows maximum 
directional PAC effect size observed in stimulus-locked case). (e) At no point during the trial period did this directionality effect for stimulus-locked PAC 
reach the magnitude of the directional PAC effect observed in the encoding-triggered case. Error bars and shaded regions indicate s.e.m. 

These results suggest an important role for both theta phase encod-
ing and high gamma activity in coordinating behavioral activity 
during cognitive control. However, they do not provide the critical 
physiological link needed to demonstrate that frontal theta networks 
coordinate inter-regional communication via phase-dependent neural 
activity. Making this connection requires a method for analyzing the 
relationship between inter-regional communication and population 
activity, for which PAC is ideally suited.

Inter-regional theta phase coordinates transient 
communication networks
High gamma activity and frontal theta phase encoding independ-
ently tracked behavior, but it is unclear whether theta phase encoding 
dynamically establishes transient oscillatory networks for coordinat-
ing frontal communication. To examine whether theta phase encoding 
coordinates activity across spatially segregated neuronal assemblies in 
M1/PMC and PFC, we need to account for the endogenous temporal 
variability when these networks are established. To accomplish this, 
we restricted our analyses to the significant encoding electrode pairs 
from the theta-phase analyses. For each encoding pair, we identified 
the encoding onset time as the time when task abstraction explained 
a significant proportion of the variance in the theta-phase difference 
between the electrode pair, across trials. These theta phase–encod-
ing onset times were then used as the new time-locking events for 
calculating event-related theta-phase/high gamma amplitude PAC28 
(Online Methods). Time locking to an endogenous event via encoding- 
triggered averaging accounted for any inherent variability in the  
timing of inter-regional communication (Fig. 3).

Theta/high gamma PAC increased with task demands such that 
the theta phase in an electrode provided task-dependent information 
about the gamma amplitude around the theta phase–encoding time 
(main effect of task abstraction, F3,1644 = 31.29, P < 10−18; Fig. 5a).  
We also observed a task-by-region interaction (F6,1644 = 3.04,  
P = 0.0058) such that encoding-triggered PAC increased as a function 
of task differentially depending on the location of the encoding pair. 
More specifically, encoding-triggered PAC increases as a function of 

task between encoding PFC electrode pairs (F3,954 = 88.55, P < 10−49) 
and for encoding pairs between M1/PMC and PFC (F3,597 = 30.75,  
P < 10−17), but less so for encoding pairs in M1/PMC (F3,93 = 2.29,  
P = 0.084). These results were specific for the theta band (P > 0.24 
each for 1–4 Hz delta, 8–12 Hz alpha and 12–24 Hz beta interactions; 
Supplementary Fig. 3).

Critical to our model for inter-regional communication, there was 
also an effect of directionality on inter-regional encoding-triggered 
PAC between M1/PMC and PFC such that PFC theta phase was a 
stronger predictor of M1/PMC high gamma than M1/PFC theta 
phase was of PFC high gamma (main effect of direction, F1,597 = 9.50,  
P = 0.0021; Fig. 5b). The time course of this effect of directional-
ity of coupling peaks around encoding onset (Fig. 5c,d), and is only 
observed when accounting for temporal shifts in inter-regional theta 
phase encoding, as can be seen by the lack of a directional effect when 
directional PAC is calculated relative to stimulus onset (Fig. 5e).

DISCUSSION
Here we provide evidence for a neurophysiological mechanism sup-
porting frontal cortical-cortical communication in cognitive control. 
Our results demonstrate that high gamma amplitude changes differ 
between frontal cortical subregions, in a manner that is dependent on 
the degree of rule abstraction required to generate a response. The fact 
that the strength and timing of high gamma and inter-regional theta 
phase encoding predicted performance on a trial-by-trial basis dem-
onstrates the importance of large-scale frontal networks in coordinat-
ing behavior. We hypothesized that PFC modulates neural activity in 
the motor cortices when abstract rules are needed to govern motor 
outcomes. Although our high gamma results indicate that the high 
gamma time-to-peak occurred later in the PFC than in M1/PMC, 
this was only true for the R1 and R2 conditions, which are known 
to minimally recruit PFC. We observed that a significant propor-
tion of the remaining variance in trial-by-trial RTs, after controlling 
for the effects of task abstraction, was explained by delays in PFC 
high gamma time-to-peak, suggesting that PFC timing delays drive 
slower RTs independent of task abstraction. Nevertheless, we argue 
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that it may not strictly be the high gamma amplitude or timing, per se,  
that is the critical index of cognitive control, but rather its modula-
tion by an oscillatory component. That is, we must account for the 
task-relevant modulation of population activity by a plausible com-
munication mechanism.

Theta/high gamma PAC offers a possible mechanism by which the 
frontal cortex simultaneously maintains multiple behavioral modes27. 
We found that multiple task demands were encoded by phase dif-
ferences between frontal subregions such that theta phase encod-
ing was strongest in electrodes in the PFC. As predicted by the PAC 
communication model, during times of task-relevant phase encod-
ing, theta phase dynamically and transiently organized trial-by-trial 
gamma amplitudes in a task-dependent manner. Notably, PAC for 
intraregional PFC, and for inter-regional PFC-to-M1/PMC, increased 
as task abstraction increased. The PAC effect for encoding electrode 
pairs that span frontal cortex (PFC to M1/PMC) was stronger for 
the PFC to M1/PMC direction than it was for the reverse direction. 
That is, PFC theta phase predicted population activity more strongly 
in the M1/PMC only when accounting for the timing variability in 
endogenous oscillatory theta encoding. This finding suggests an  
anterior-to-posterior information flow, supporting a hierarchical 
cognitive control architecture.

These results lend strong support to the argument that PAC indexes 
task-relevant information transfer in the frontal cortex, and they are 
consistent with models that suggest that neural oscillations may serve 
to coordinate complex behaviors16,28,40,41. Although spike and phase 
encoding schemes have recently been found to be involved in coordi-
nating behaviorally relevant neural activity in animals42,43, there have 
been no studies to date that suggest that inter-regional phase ampli-
tude coupling supports communication in support of higher cogni-
tion. Our results address a fundamental issue regarding frontal lobe 
organization and function by showing that oscillatory phase encoding 
and temporally precise, dynamic spiking activity, manifested as corti-
cal high gamma, may be the mechanism by which frontal subregions 
coordinate task-dependent neural processing.

Some caveats are worth addressing. ECoG recording restrictions 
resulted in sampling that was both sparse and spatially biased. This 
constraint required collapsing across broad cortical ROIs. Thus, 
although our results are consistent with prior lesion and neuroimag-
ing evidence regarding anterior-to-posterior frontal organization, they 
are unable to inform the multi-level anatomical specificity proposed 
by the most detailed versions of these models. In addition, the time 
limitations of the ECoG recording environment limited our ability  
to further manipulate rule abstraction across conditions without 
including additional controls for changes in task difficulty3,9,13.

Our results contrast with invasive results from PFC recordings in 
macaques that show a critical role for other oscillatory frequencies, 
such as beta (12–24 Hz) in coordinating PFC ensembles. Most notably, 
these studies use penetrating intralaminar electrodes to record LFPs 
from macaques44,45. This approach likely has an effect on the observ-
able results since different cortical layers have different dominant 
frequencies. There is also increasing evidence that different frequen-
cies may have different roles in routing information between brain 
regions41, that different regions have different preferred low coupling 
frequencies with high gamma16, and that low frequency oscillations 
may interact with, or be nested in, one another46,47. Finally, it is likely 
that inter-regional coupling is mediated in part by subcortical struc-
tures, including the basal ganglia11,12,15 and/or thalamus30,48, or other 
neocortical regions, such as parietal association cortex49. In the con-
text of preparatory cognitive control, for example, distinct cognitive 
control states have been shown to differentially activate theta-coherent  

frontoparietal subnetworks depending on task demands, an effect that 
has been observed in both human50 and non-human primate EEG49. 
This finding is especially relevant given the broad role that oscilla-
tory coherence has in shaping ongoing, endogenous neural activity, 
as opposed to stimulus-locked effects37.

In summary, our results address a major question in systems and 
cognitive neuroscience regarding how the frontal lobes coordinate 
information. Our results provide evidence that theta phase encoding 
dynamically coordinates local neuronal activity across frontal regions 
in a manner dependent on task demands. These data demonstrate 
how neural activity at different timescales might be used to coordinate 
information between anatomically distributed regions. Together, our 
findings suggest a mechanism for coordination of neural processing 
for complex cognitive functioning in the human frontal cortex.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
data collection. Data were collected from four subjects with intractable epi-
lepsy who were implanted with chronic subdural grid electrodes as part of a pre-
operative procedure to localize the epileptogenic focus. The surgeons determined  
electrode placement and treatment based solely on the clinical needs of each 
patient. Data were recorded at three hospitals: the University of California, San 
Francisco (UCSF) Hospital (subjects UC1 and UC2), the Johns Hopkins School 
of Medicine (subject JH1), and the Stanford School of Medicine (subject ST1). All 
subjects gave written informed consent to participate in the study in accordance 
with the University of California, Berkeley Institutional Review Board as well 
as the review boards of the relevant hospital (that is, the UCSF, Johns Hopkins 
Medicine or Stanford Institutional Review Boards).

ECoG data were acquired using a custom-built Tucker Davis Technologies 
recording system (256 channel amplifier and Z-series digital signal processor 
board) at UCSF and Stanford, or via a clinical 128-channel Harmonie system 
(Stellate) recording system at Johns Hopkins. Data were sampled at 3,052 Hz (UCSF 
and Stanford) or at 1,000 Hz (Johns Hopkins). Signals were digitized for further 
analysis and, for subjects UC1, UC2, and S1, were resampled offline to 1,000 Hz. 
ECoG data were individually referenced to the average potential of all electrodes.

Behavioral task. Hierarchical control demands were manipulated by para-
metrically increasing the order of abstraction of response selection rules across 
two manual response tasks shown in a previous fMRI study to recruit progres-
sively more anterior portions of frontal cortex3,18 (Fig. 1a,b). The response task 
manipulated abstraction between zero- and first-order response rules, termed 
the R1 and R2 conditions, respectively. The dimension experiment manipulated 
abstraction between second- and third-order rules, termed the D1 and D2 con-
ditions respectively. All analyses assume a parametric relationship of increasing 
abstraction from R1 through D2, with D2 being the most abstract condition.

Response task. On each trial, participants saw the outline of a colored square. 
Based on the color of the square, participants chose a key-press response on the 
keyboard. Trials were grouped into blocks. For each block, participants were given 
a previously trained rule set that mapped two colored boxes to be seen over the 
course of the upcoming block to either one (R1) or two (R2) potential responses. 
Thus, during R1 blocks, there was no uncertainty about what response to make, 
so R1 provides a concrete motor baseline or a ‘zero-order abstraction condition’. 
By contrast, R2 involved selecting one of two responses contingent on color, and 
so requires behaving according to a first-order rule.

Trials began with the presentation of the colored box. Upon presentation of 
the box, participants were instructed to respond as quickly but as accurately as 
possible. If participants had not responded within 15 s, the trial self-terminated 
and was not included in future analysis. Trials were separated by a 1,000-ms 
inter-trial interval.

Dimension task. Participants saw the outline of a colored square surrounding 
two objects. On each trial, the two objects could be the same or different from 
each other in terms of their shape or their visual texture. The color of the bound-
ing square could also change on each trial and cued one of these two dimensions 
(shape or texture) as the target dimension for that trial. Using one of two keys 
on the keyboard, the participant indicated for each trial whether the two objects 
matched or not along the target dimension.

Trials were grouped into blocks. For each block, participants were given a rule 
set that mapped two colored boxes to be seen over the course of the upcoming 
block to either one (D1) or two (D2) target dimensions. During D1 blocks, there 
is no uncertainty about which dimension is the target, as all the colors map to 
the same dimension. Thus, D1 only required choosing which of two responses to 
make based on the relationship between the two objects (a second-order rule). By 
contrast, D2 involved using the colored box to select the appropriate dimension 
along which to relate the two objects. Thus, this condition required behaving 
according to a third-order rule.

Trials began with the presentation of the colored box bounding the two objects. 
Following presentation of the stimulus, participants were instructed to respond 
as quickly, but as accurately, as possible. If participants had not responded within 
5 s, the trial self-terminated and was not included in future analysis. Trials were 
separated by a 200-ms inter-trial interval.

Prior to performing both types of task, participants went through a training 
phase to learn the rule sets for all conditions. For each rule set they were shown 
the relevant color-to-response or color-to-dimension mappings and then were 

verbally quizzed about each one. They then performed 12-16 trials of practice, 
during which timing was self-paced, followed by 12-16 practice trials using the 
same parameters as in the actual experiment. Following training, participants 
completed the task, consisting of 64 trials divided evenly between the R1 and R2 
(or D1 and D2) conditions.

electrophysiology pre-processing. All electrophysiological data were analyzed 
in MATLAB using custom scripts. We analyzed data from electrodes over frontal 
cortex. Out of 142 frontal channels, 140 were artifact-free and included in sub-
sequent analyses. Electrode classification into discrete PFC and M1/PMC ROIs 
was based on surface anatomy. We included in the M1/PMC grouping any frontal 
electrodes on or posterior to the precentral sulcus. For all analyses, only data 
from correct trials were used. Data for each frontal channel were first filtered into 
separate theta (xθ, 4–8 Hz) and high gamma (xγ, 80–150 Hz) pass bands using a 
two-way, zero phase-lag, finite impulse response filter to prevent phase distortion 
(eegfilt.m function in EEGLAB toolbox16,22,23,26,51). We then applied a Hilbert 
transform to each of these time series (hilbert.m function) to extract the analytic 
amplitude for both bands. The Hilbert transform gives a complex time series. 

h n a n ex x
i x n[ ] [ ] [ ]= f

where ax[n] represents the instantaneous analytic amplitude, and φx[n] is the 
instantaneous phase (Supplementary Fig. 5). This method is equivalent to sliding 
window FFT and wavelet decomposition approaches18,19,21,52. For high gamma 
amplitude analyses, data were averaged for each region (PFC and M1/PMC) 
separately for each subject, and broken into event-related epochs using a 200-ms 
baseline to remove any pre-stimulus differences in baseline amplitude.

High gamma analyses. To identify task-selective high gamma channels,  
we performed a sliding-window one-way ANOVA at each time point for  
each subject, channel, and band with a condition order of R1, R2, D1 and D2. 
This approach permitted us to examine the amount of high gamma variance 
explained by the task, similar to methods used in single-unit electrophysiol-
ogy experiments16,21–23,25,26,53. Electrodes demonstrating a significant effect of  
task (P ≤ 0.05) for more than 100 ms consecutively were defined as task selec-
tive. This analysis is naïve with regards to electrode location or to whether  
task abstraction caused event-related high gamma amplitude increases or 
decreases. Trial-by-trial high gamma peaks and peak times were identified from 
the average high gamma analytic amplitude time series for each ROI. Subsequent 
high gamma amplitude and time-to-peak analyses (Fig. 2c,d) were performed 
using repeated measures ANOVA with task condition as the within-subjects 
factor and electrode location as the between-subjects factor.

theta phase analyses. As noted from equation (1), the Hilbert transform gives an 
estimate of amplitude (ax[n]) and phase (φx[n]). The phase time series φx assumes 
values within (-π,π] radians with a cosine phase such that π radians corresponds 
to the trough and 0 radians to the peak. To calculate trial-by-trial interelectrode 
theta phase encoding, first φθ was estimated for each electrode and then, for each 
pair of frontal electrodes (i, j) the phase difference φθij was calculated at each time 
point, and this phase difference time series was then broken into individual trial 
epochs for future inter-regional phase encoding analysis. 

f f fq q qij i jn n n[ ] [ ] [ ]= −

To examine the behavioral role of inter-regional phase encoding we adopted a 
similar analysis protocol as used for the high gamma amplitude. First, encoding 
electrode pairs were identified using a sliding-window circular-linear correla-
tion, which combines coefficients between a linear variable (task condition, C) 
and the linearized phase variable (φθij) by extracting the sin and cos components 
of φθij. A single correlation coefficient, ρ, and its associated p value was then 
calculated where 

rfC
cC sC cC sC cs

cs

r r r r r
r

= + −
−

2 2

2
2

1

with rcC = c(cos φθij[n],C), rsC = c(sin φθij[n],C), rcs = c(sin φθij[n],cos φθij[n]),  
and c(x,y) equal to the Pearson correlation between x and y54. Electrodes  

(1)(1)

(2)(2)

(3)(3)
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demonstrating a significant correlation (P ≤ 0.05) for more than 100 ms con-
secutively were defined as theta phase encoding. Encoding strength, ρφC, for 
encoding pairs was then averaged across possible ROI combinations: intraregional 
M1/PMC, intraregional PFC, or inter-regional PFC-with-M1/PMC, where the 
two encoding electrodes reside within the same ROI for the intraregional group-
ings, and cross ROIs for the inter-regional grouping. Trial-by-trial phase encoding 
was adjusted using a 200-ms pre-stimulus baseline to isolate behavioral changes. 
Note that this adjustment may result in task-related phase encoding that is lower 
than the baseline, and therefore ρφC may be less than 0. For these analyses theta 
phase encoding was analyzed using unpaired t-tests comparing encoding strength 
across regions.

This technique offers several benefits over, for example, methods looking at 
coherence across time. First, just as with the high gamma amplitude analyses, this 
analysis is naïve with regards to electrode location and makes no a priori assump-
tions about the time window of interest. Specifically, because we are looking at 
the percent of inter-regional phase coupling variance explained by task condition 
across trials at every time point, 100 ms of consecutive encoding (defined as 
100 consecutive milliseconds of a significant relationship between inter-regional 
phase and task condition) is a conservative approach, as this procedure yields 
almost no encoding pairs is resampling methods are used (shuffling the relation-
ship between phase difference and task condition). Second, it makes no strict 
assumptions about coherence, per se, and rather focuses on the task encoding 
aspect, specifically looking at how predictive of the task condition the moment-
to-moment theta phase difference between the two electrodes is across trials.  
This is important because it reduces the probability of spurious coherence driven 
by, for example, equipment issues, electrode reference choice, or signal propaga-
tion and specifically requires there to be task-related changes. The downside 
is that because encoding is explicitly defined as the relationship between task  
and theta phase, it cannot be calculated separately for each task condition.

As a result, any given electrode could in theory participate in multiple theta 
encoding pairs at different times. By way of illustration, electrode i could show 
significant theta phase task encoding with electrode j from 1,200–1,600 ms, 
for example, whereas i could also show significant theta phase task encoding  
with electrode k from 400–550 ms. On the other hand, electrode j and k need 
not show any theta phase encoding and the null hypothesis would state that 
while two electrodes may show significant theta phase encoding of the task, theta  
phase need not have any predictive power for trial-by-trial variance in high 
gamma amplitude.

The primary phase-encoding analysis flow defines a channel pair as phase 
encoding if their phase differences significantly encode task parameters during 
the post-stimulus window for at least 100 ms using a sliding-window approach 
to estimate the relationship between theta phase difference and task on a time 
point-by-time point basis. This process results in 21.8% of the channels classified 
as phase encoding (as previously noted). To assess the likelihood that this process 
results in false positives, we performed permutation analyses. For this analysis, 
analyses were performed as normal, but trial condition identifiers were permuted 
in 100 surrogate runs. That is, for each subject the same number of trials were kept 
per condition, but their trial-by-trial condition mapping was randomly permuted. 
Using this surrogate trial remapping, the same sliding window analysis was  
performed as above and the number of channel pairs classified as phase encoding 
was stored. This was done 100 times for all channel pairs to get an estimate of the 
distribution of the proportion of false positives yielded by the primary method, 
keeping everything in place as before except for the trial encoding.

Phase and amplitude coupling analyses. For PAC analyses, for each theta phase 
encoding channel pair we examined the relationship between theta phase from 
electrode i and high gamma amplitude in that same electrode using the same 
circular-linear correlation method above, except with aγ as the linear variable 
and φθi or φθj (instead of φθij) as the circular variable 

rfa
ca sa ca sa cs

cs

r r r r r
r

= + −
−

2 2

2
2

1

where rca = c(cos φθi[n],aγi[n]), rsa = c(sin φθi[n],aγi[n]), and rcs = c(sin φθi[n],  
cos φθi[n]). For directional analyses for M1/PMC with PFC pairs, ρφa was calculated  

(4)(4)

as above but using theta phase from electrode i and the gamma amplitude from its 
theta-encoded pair, j. This sliding-window approach was performed for stimulus-
locked and encoding-triggered PAC, where ‘encoding-triggered’ was identified 
from the onset time of significant theta phase encoding as calculated from the 
previous analysis (equation (3)). We hypothesized that PAC determined around 
the time of interelectrode communication would be significantly greater than 
PAC that did not account for this endogenous temporal variability.

PAC was calculated separately for each task condition and electrode pairing 
combination (intraregional M1/PMC, intraregional PFC, and inter-regional PFC-
with-M1/PMC) as the average PAC value across a 100-ms window around encod-
ing. Furthermore, for the inter-regional PFC-with-M1/PMC theta-encoding pairs, 
we could examine directionality effects to see if PFC theta modulates M1/PMC 
high gamma differently than M1/PMC theta modulates PFC high gamma. This 
approach allows us to assess the likelihood that task-dependent PAC effects are 
an epiphenomenon arising from task difficulty, or whether PAC is specifically 
conveying task-related information between frontal regions when those regions 
encode task parameters in their theta phases. For these analyses we performed a 
repeated-measures ANOVA with task condition as the within-subjects factor and 
theta phase encoding region pair as the between-subjects factor.

control analyses. An alternate explanation for the increased PFC high gamma 
activity and latency is that task difficulty by condition, rather than cognitive 
control per se, could give rise to the observed high gamma effects. While pre-
vious versions of this task were able to explicitly behaviorally control for task  
difficulty3,9,13, the limitations of the ECoG recording environment prohibited 
longer behavioral experiments. However the improved signal-to-noise in trial-
by-trial high gamma recordings relative to fMRI data allows for more careful 
quantitative approaches to comparing cognitive control versus task difficulty, 
which we outline here. In general each supplemental method requires removing 
the effects of RT differences between task conditions to equate difficulty. Two dif-
ferent methods were used that, given the linear nature of the analysis, are closely 
related although conceptually different.

Difficulty Correcting Method. The effects of task condition on RT can be held 
constant via linear regression, and the trial-by-trial relationship between high 
gamma activity and the residual variance can be examined. This method assumes 
that, if difficulty alone can explain gamma differences, then high gamma would 
have no explanatory power over the residual RT variance separate from task 
condition.

Difficulty Matching Method. Similarly, if difficulty alone explains high gamma 
activity differences across conditions, then across neighboring conditions  
(that is, R1/R2, R2/D1, and D1/D2) for RT-matched trials, there should be no 
difference in high gamma given that the only difference is not in behavioral 
outcome but cognitive control.

difficulty correcting method. For this method, a regression between task con-
dition and RT was performed, from which the difference between the predicted 
RT and actual RT could be calculated (the residuals) given task condition alone. 
Next, high gamma activity (amplitude and time-to-peak) could then be regressed 
against these residuals to see if high gamma activity could explain any of the 
remaining trial-by-trial RT variance when task condition (here, conceptual-
ized for hypothesis testing purposes as ‘difficulty’) was held constant. Even after 
removing the effects of task abstraction, trial-by-trial RT could be predicted from 
high gamma activity (R2 = 0.026, P = 0.020).

difficulty matching method. By matching trials by response time between 
neighboring task conditions, differences between behavioral variables are mini-
mized, thereby emphasizing only differences in cognitive control. This paired 
analysis yielded 77 trial pairs within ±25 ms with no RT bias in either direction  
(P > 0.5). Such an analysis comparing PFC high gamma between any two ran-
domly RT-matched trials should show that high gamma activity is greater for 
the more abstract condition compared to its RT-matched, but less-abstract, task 
condition pair. In keeping with the cognitive control hypothesis, PFC high gamma 
activity was significantly different between RT-matched trial pairs (P = 0.041). 
A resampling analysis of 104 randomly selected groups of 85 between-condition 
trial pairs showed that PFC high gamma is, on average, 0.18 µV greater for the 
more abstract conditions (P = 0.047).
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Statistical analysis. All analyses on RT and high gamma time to peak were done 
using the log10 transformed times (in ms). This transformation was applied 
because the RT were skewed with a long right tail; the log transformation lead to 
a more normal distribution. Multiple linear regression models were constructed 
using the neural indexes (M1/PMC and PFC high gamma peak amplitude and 
time to first peak; stimulus-locked and peri-response frontal network theta phase 
encoding) as predictors of log10 RT. Statistical tests performed are indicated 
next to reported P values in the text. For parametric tests (regression, t tests, 
and ANOVA), data were tested for normality, although for the relatively larger  
n values used for the analyses (performed on a trial-by-trial or channel-by-channel  
basis) this is not as much a concern as long as the data are not heavy-tailed (which 
these data are not)55. In cases where normality was violated, specifically for RT, 
gamma peak time and coherence peak time analyses, non-parametric equivalent 
statistics (for example, Wilcoxon rank sum test) were used to confirm parametric  
results. In each such case, tests significant in the parametric case remained  
significant when a non-parametric equivalent was used. Trials for which RT or any 

of the neural measures included outliers (±4 s.d. from the mean) were excluded 
from analyses. No statistical methods were used to pre-determine sample sizes 
but our sample sizes are similar to those employed in ECoG studies.

A Supplementary methods checklist is available.
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Supplementary Figure 1 

Stimulus-locked electrophysiology. 

Of the 140 frontal electrodes included in the analysis, 31 (22.1%) showed a significant main effect of task on stimulus-locked high 
gamma (80-150 Hz) amplitude. The figure above shows the average percent variance across time and frequency bands explained by 
the task-responsive electrodes. Although there is also significant encoding of task on theta and beta amplitude, the neurophysiological 
origin of changes in those bands are less clear and thus were not addressed in our manuscript. 
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Supplementary Figure 2 

Frontal high gamma amplitude tracks trial-by-trial response times. 

Stacked single trial M1/PMC high gamma activity sorted by response time for R1/R2 conditions demonstrates the high single trial high 
gamma signal-to-noise tracking motor response. 
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Supplementary Figure 3 

Frequency specificity of phase encoding. 

Plot showing the percent of phase-encoding electrode pairs broken out by location of the encoding pair (intraregional M1/PMC, 
interregional M1/PMC with PFC, and intraregional PFC) and by frequency band using 30 2-Hz overlapping passbands from 1 to 31 Hz. 
There is a clear density in the theta range (shaded region, 4-8 Hz). For electrodes within M1/PMC, there is also an increase in the mu-
rhythm (8-12 Hz) range; this phenomenon was not further addressed in our current manuscript. 
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Supplementary Figure 4 

Procedure for extracting high gamma analytic amplitude and theta phase from raw ECoG data. 

The raw ECoG data is filtered in both the high gamma and theta bands, from which we extract 

estimates of the instantaneous high gamma analytic amplitude and theta phase. These allow us to 

examine the relationship between these signals and the task. 
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Supplementary Figure 5 

Single-trial peak finding. 

This figure shows an example of 20 individual theta phase encoding trials for one subject. Each individual trial is plotted as a blue line, 
with the 20-trial average plotted in black. The identified individual trial phase encoding peak is plotted as a black dot at the peak 
location. The two red vertical lines show the average phase encoding time as identified from the 20-trial average (left) or from the 
average of the 20 individual trial times (right). This result highlights the peak trial-by-trial encoding time variability that is masked by a 
group average. 
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